SciELO - Scientific Electronic Library Online

 
vol.15 número81Formas de vida de la vegetación en el límite superior de un bosque de alta montaña en MéxicoDiferencias en la respuesta de indicadores dendrocronológicos a condiciones climáticas y topográficas índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias forestales

versión impresa ISSN 2007-1132

Rev. mex. de cienc. forestales vol.15 no.81 México ene./feb. 2024  Epub 13-Mayo-2024

https://doi.org/10.29298/rmcf.v15i81.1426 

Scientific article

Spatial distribution of Pinus and Quercus in an altitudinal gradient of temperate forest in Guadalupe y Calvo, state of Chihuahua

Samuel Alberto García-García1 

Eduardo Alanís Rodríguez1  * 

Ernesto Alonso Rubio-Camacho2 

Óscar Alberto Aguirre-Calderón1 

José Israel Yerena-Yamallel1 

Luis Gerardo Cuéllar Rodríguez1 

Alejandro Collantes Chávez-Costa3 

1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. México.

2INIFAP, Campo Experimental Centro-Altos de Jalisco. México.

3Universidad Autónoma del Estado de Quintana Roo, Campus Cozumel. México.


Abstract

The objective of the study was to determine the spatial distribution patterns of Pinus and Quercus species along an altitudinal gradient in a temperate forest in northwestern Mexico. Individual uniformity (W i ), species mixture (M i ), and size dominance (U i ) were analyzed using structural parameters based on the relationships with the four nearest neighbors. Data were obtained from 37 sampling sites at three different altitude levels (Level 1: 2 200-2 600 m, Level 2: 2 600-2 800 m, and Level 3: 2 800-3 200 m), generating a total of 979 structural groups for all species. Pinus contributed 191, 51, and 41 groups at levels 1, 2, and 3, while Quercus contributed 192, one and zero, respectively. Pinus showed a tendency towards randomness, as did the oaks at Level 1; although, in this analysis, it was observed that at higher altitudes, Pinus tends towards a regular distribution. The species mix was medium to high for Pinus, which indicates that its individuals are surrounded by trees of different species, unlike Quercus. Size dominance revealed that Pinus specimens are taller than those of the Quercus genus throughout the gradient, especially at Level I. This approach provides an accurate understanding of the role of species in forest ecosystem dynamics.

Key words Altitude; conservation; size dominance; tree structure; neighborhood indexes; species mix

Resumen

El objetivo del estudio fue determinar los patrones de distribución espacial de las especies de Pinus y Quercus a lo largo de un gradiente altitudinal en un bosque templado del noroeste de México. Se analizó la uniformidad de los individuos (W i ), la mezcla de especies (M i ) y la dominancia dimensional (U i ) mediante parámetros estructurales basados en las relaciones con los cuatro vecinos más cercanos. Los datos se obtuvieron de 37 sitios de muestreo en tres niveles altitudinales (Nivel 1: 2 200-2 600 m, Nivel 2: 2 600-2 800 m y Nivel 3: 2 800-3 200 m), lo que generó un total de 979 grupos estructurales para todas las especies. Pinus contribuyó con 191, 51 y 41 grupos en los niveles 1, 2 y 3; mientras que Quercus aportó 192, uno y cero, respectivamente. Pinus evidenció tendencia hacia la aleatoriedad, y los encinos también en el Nivel 1, aunque en este análisis se observó que a mayor altitud Pinus tiende hacia una distribución regular. La mezcla de especies fue de media a alta para Pinus, lo cual indica que sus individuos están rodeados de árboles de especies diferentes, y con Quercus ocurrió al contrario. La dominancia dimensional reveló que los ejemplares de Pinus tienen mayor altura que los del género Quercus en todo el gradiente, especialmente en el Nivel 1. Este enfoque proporciona una comprensión exacta de la función que cumplen las especies en la dinámica de los ecosistemas forestales.

Palabras clave Altitud; conservación; dominancia dimensional; estructura arbórea; índices de vecindad; mezcla de especies

Introduction

Temperate forests cover a wide distribution in Mexico, from the southern region in Chiapas State (16° N and 91° W) to the San Pedro Mártir Sierra in northern Baja California (31° N and 115° W) (Luna-Cavazos et al., 2008; López-Hernández et al., 2018). Species distribution is limited by different climatic and physiographic factors such as temperature, precipitation, humidity, slope, and altitude, among others (Poulos and Camp, 2005; Babst et al., 2019; Dakhil et al., 2019).

Knowledge of the structural composition of forest ecosystems is essential to understand the mechanisms of coexistence between species within plant communities (Gu et al., 2019). In order to characterize the structural diversity of forest stands, three elements are considered: the spatial distribution of trees, the mix of species, and the differentiation in tree sizes (Gadow, 1999; Pommerening, 2002).

At a global level, studies on the structure and relationship of forests with altitude have been carried out, in which it is recognized that altitude plays an important role in the composition and natural distribution of vegetation (Tiwari et al., 2020; Thakur et al., 2021; Asbeck et al., 2022). In Mexico, research has been carried out to test the impact of fires on the distribution, the degree of mixing and the size dominance (Rubio-Camacho et al., 2017), and also, particularly, to define and understand these spatial characteristics in temperate forests (Chávez-Flores et al., 2020; Graciano-Ávila et al., 2020), as well as in forests under conservation (García-García et al., 2021). However, both nationally and internationally, little research has been done on the spatial distribution of species in relation to altitudinal gradients.

The Cerro Mohinora Natural Protected Area (NPA) covers a wide altitude range between 2 100 and 3 307 masl and harbors a remarkable diversity of ecosystems. In addition to its ecological relevance, it stands out for its abundant rainfall. In it, there are coniferous forests in a pristine state, including associations of genera such as Abies Mill., Picea A. Dietr., Pseudotsuga Carrière, Pinus L., and Quercus L., which provide habitat for numerous species, some of which are endemic or at risk (Conanp, 2017).

Because of this, it is important to document the spatial interaction of tree species along altitude gradients. This would make it possible to generate more appropriate proposals for their conservation, restoration and use with an adaptive approach.

The objective of the present study was to characterize the spatial evenness, degree of mixing, and size dominance of Pinus and Quercus species along an altitudinal gradient in a temperate forest of the Cerro Mohinora NPA, located in Guadalupe y Calvo, state of Chihuahua, Mexico.

Materials and Methods

Study area

The research was carried out in the Cerro Mohinora Natural Protected Area (NPA), located in Guadalupe y Calvo municipality, Chihuahua, northwestern Mexico (between 25°40'48'' and 26°13'12'' N and 106°31'48'' and 107°06'00'' W) (Figure 1). Average annual precipitation varies between 200 and 1 800 mm, with a monthly average of 0-40 mm in the driest month. The average annual temperature varies from 5 to 12 °C, with an average of -3 to 18 °C in the coldest month (Arriaga et al., 2000).

Figure 1 Location of the study area and distribution of sampling sites. 

Sampling design

A total of 37 circular sampling sites with a size of 1 000 m2 each were established randomly and distributed in six north-facing stands, because in this exposure there are mostly populations of such genera as Pseudotsuga, Picea and Abies. These genera are of conservation interest due to their protected status (García-Arévalo, 2008; Semarnat, 2019) at an altitude gradient ranging from 2 200 to 3 200 masl, where three altitude levels were defined to cover the maximum altitudinal range, and the different types of vegetation registered in the management program of the NPA (Conanp, 2017): Level 1 (2 200-2 600 m), Level 2 (2 600-2 800 m), and Level 3 (2 800-3 200 m). Two stands were considered at each altitude level to include the different vegetation types present, and a sampling intensity of 2 % was applied.

In each of the 1 000 m2 sites, mensuration information of the tree stratum was collected, focusing on individuals with a normal diameter (ND) ≥7.5 cm. The tree variables recorded included total height (h) and ND. The height was estimated using a Suunto® Pm-5 clinometer, while the normal diameter was measured using a Haglöf® Mantax Blue aluminum caliper. The distance from the trees to the center of the site was recorded with a 20 m Truper® TP20ME tape measure. In addition, a Brunton GEO® Pocket compass was used to obtain the azimuth. The correct nomenclature and identity of the species was verified using the Tropicos® platform (Tropicos, 2022).

Data analysis

The spatial distribution patterns were determined with structural parameters based on the relationships between a reference tree (i) and its four nearest neighbors, which appropriately expresses the spatial structural characteristics of the plant communities and allows the design of more appropriate management practices for the specific conditions of the forests (Hui and Gadow, 2002; Pastorella and Paletto, 2013; Rubio-Camacho et al., 2023).

According to Gadow et al. (1998), the angle uniformity index (W i ) is based on the measurement of the angles between neighbors to a reference tree i and their comparison with a standard angle α, and acquires values from zero to one; a value close to zero reflects regularity; values close to 0.5 show a predisposition to randomness, and those close to one indicate clustering scenarios.

Wi = 1nj = 1nWij (1)

Where:

W i = Index value for the reference tree j th

n = Number of neighboring trees considered

V ij = Variable 1 when the j th angle α between two next neighboring trees is less than or equal to the standard angle α, otherwise, it takes a value of 0

The species mix was determined based on the species mix index (M i ). Füldner (1995) defines it as the proportion of the nearest neighbors n that are not of the same species as the reference tree.

Mi = 1nj = 1nVj (2)

Where:

M i = Index value for the reference tree j th

n = Number of neighboring trees considered

V j = Equal to 0 when the tree j belongs to the same species as reference tree i, and equal to 1 otherwise (Gadow et al., 2007).

The height dominance between genera was tested with the size dominance index (U i ), which reflects the proportion of neighboring trees that are smaller than the reference tree i (Gadow et al., 1998).

Ui = 1nj = 1nVj (3)

Where:

U i = Index value for the reference tree j th

n = Number of neighboring trees considered

V j = Equal to 1 if the tree j is smaller than the reference tree i, and 0 otherwise

With four neighboring trees, the (U i ) dominance index takes five values and is useful for interpreting the relative dominance of a species or genus (Aguirre et al., 2003; Gadow et al., 2007).

The indexes were analyzed using the R Studio software (Versión: 2023.09.1+494) (R Core Team, 2019), within an observation window (W) (sampling sites) where the previously described formulas are run. In this observation window, the edge effect was considered. This effect plays an important role in the proper interpretation of the spatial structure, as within the sampling sites there are trees that are located close to the edge, while their nearest neighbors are regularly located outside the edge, which results in errors in the estimation of the neighborhood values of the trees that are inside the sampling sites (Pommerening and Stoyan, 2006).

In order to prevent these errors, the nearest neighbor edge correction estimator (NN1: Nearest-neighbour edge-correction concepts) was applied, which consists of excluding as reference tree (i) those whose distance to their j th nearest neighbor is less than the distance between (i) and the edge of the sampling site (W). Also, those trees may be part of other close neighboring structural groups (Pommerening and Stoyan, 2006).

Statistical analysis

All indexes, graphs and statistical analyses were performed with the R software (R Core Team, 2019). The means and their 95 % confidence intervals (CI) were calculated by site and altitude level using BOOTSTRAP simulations (999). In addition, the statistical contrasts between treatments were determined with the percentile method of the BOOTSTRAP distribution for two independent samples, using the pb2gen function in R (Mair and Wilcox, 2020).

Results and Discussion

Mensuration characteristics

Table 1 shows the means of the estimated mensuration variables for all the species recorded. Four Pinus species were present in Level 1. No individuals of the species Pinus engelmannii Carrière were observed in levels 2 and 3, because its distribution range varies from 1 600 to 2 600 m (Jiménez and Méndez, 2021). The opposite was the case for the density of individuals of Pinus durangensis Martínez and P. strobiformis Engelm. in Level 2, where it is higher than in levels 1 and 3, as these pines develop optimally at altitudes equal to or above 2 400 masl (Pérez-Olvera and Dávalos-Sotelo, 2008). In the case of Quercus, four species reached their highest density at Level 1 (2 200-2 600 m) and decreased in number or were absent at levels 2 and 3; this reduced occurrence at higher altitudes may be ascribed to the fact that usually, Quercus species are not abundantly distributed at altitudes around 2 800 and 3 000 masl (Martínez-Calderón et al., 2017; Uribe-Salas et al., 2019).

Table 1 Mensuration characteristics of species present in the altitude gradient. 

Species Density (N ha -1 ) D 1.30 (cm) h (m)
N1 N2 N3 N1 N2 N3 N1 N2 N3
Abies durangensis Martínez 16 162 269 20.57 18.04 19.78 13.99 12.72 10.63
Arbutus arizonica (A. Gray) Sarg. 9 0 0 19.25 0.00 0.00 7.07 0.00 0.00
Arbutus xalapensis Kunth 19 4 0 22.76 14.38 0.00 8.12 7.45 0.00
Juniperus deppeana Steud. 8 8 1 19.10 10.64 26.00 7.97 5.71 6.20
Pinus arizonica Engelm. 77 33 27 20.89 19.13 20.05 14.33 9.17 11.12
Pinus strobiformis Engelm. 18 59 19 25.00 21.29 17.16 14.90 11.83 9.10
Pinus durangensis Martínez 14 23 5 38.11 33.31 36.86 17.51 15.88 15.86
Pinus engelmannii Carrière 80 0 0 21.30 0.00 0.00 13.52 0.00 0.00
Populus tremuloides Michx. 35 22 30 16.32 10.73 31.06 8.55 7.95 17.09
Pseudotsuga menziesii (Mirb.) Franco 6 109 104 56.25 26.72 22.88 19.71 17.30 10.82
Quercus crassifolia Bonpl. 25 0 0 17.22 0.00 0.00 10.10 0.00 0.00
Quercus fulva Liebm. 35 1 0 19.62 44.00 0.00 9.76 22.50 0.00
Quercus rugosa Née 29 1 0 23.50 38.00 0.00 10.12 21.60 0.00
Quercus sideroxyla Bonpl. 169 1 1 16.65 19.00 48.50 10.12 9.50 12.35
Picea mexicana Martínez 0 0 46 0.00 0.00 21.91 0.00 0.00 10.13
Total general 540 424 501

D 1.30 = Average normal diameter at 1.30 m; h = Average height; N1 = Altitude Level 1 (2 200-2 600 m); N2 = Altitude Level 2 (2 600-2 800 m); N3 = Altitude Level 3 (2 800-3 200 m).

It is important to note that the presence and patterns of vegetation along altitude gradients are generated by virtue of the complex interaction of various factors such as altitude, exposure to solar radiation, and the topographic position of plant populations, among other observable elements (Girardin et al., 2014; Jadán et al., 2017; Cabrera et al., 2019).

In this sense, a significant dominance of Abies durangensis Martínez and Pseudotsuga menziesii (Mirb.) Franco is observed at Level 3, where environmental conditions are adverse for most Pinus and Quercus species, as altitude influences temperature and humidity both in the environment and in the soil. This can result in reduced growth of individuals, reduced regeneration survival, impact on seed viability, and deterioration of vegetation vitality (Champo-Jiménez et al., 2012; Gutiérrez and Trejo, 2014; Villanueva-Díaz et al., 2018).

Spatial distribution of trees in the altitudinal gradient

Figure 2 illustrates the spatial distribution of trees in each of the Level 1 sites based on the NN1 estimator, which means that only those trees that could be considered as tree i of the structural group are represented. A total of 393 structural groups consisting of a reference tree and four neighboring trees were used in the analysis of the neighborhood indexes. Furthermore, the Quercus and Pinus genera were identified as having the highest number of structural groups, amounting to 192 and 141, respectively.

Figure 2 Spatial distribution of trees in each of the sites by genus at Level 1. 

On the other hand, Figure 3 shows the spatial distribution of trees in each of the Level 2 sites. 183 structural groups were included in this analysis. Sites 2, 8, and 1 had the highest number of clusters with 36, 28 and 27, respectively. In this case, Pinus was represented in terms of structural groups by 51, while Quercus was part of only one structural group.

Figure 3 Spatial distribution of trees in each of the sites by genus at Level 2. 

Finally, Figure 4 shows the spatial distribution of trees in each of the Level 3 sites, in which 403 structural groups were considered. As for Pinus species, 26 structural groups were registered for P. arizonica Engelm., 12 for P. strobiformis, and three for P. durangensis. No structural groups were obtained for Quercus sideroxyla Bonpl., the only oak species present at this altitude.

Figure 4 Spatial distribution of trees in each of the sites by genus at Level 3. 

It was observed that, the lower the tree density, the lesser the number of structural groups, as shown in Level 2, however, the distance between trees is also a determining factor. García-García et al. (2021) cited 203 groups for a density of 254 N ha-1 in a Pseudotsuga menziesii forest with presence of Pinus and Quercus. Rubio-Camacho et al. (2017) carried out a genus analysis and identified a total of 213 Pinus and 193 Quercus clusters in one of the studied plots. In the second plot, 129 Pinus and 189 Quercus clusters were recorded. These results were associated with densities of 242 and 211 individuals per hectare, respectively. Castellanos-Bolaños et al. (2010) document between 123 and 365 groups for various Pinus-Quercus associations, with the exception of the association dominated by Pinus patula Schltdl. & Cham., for which they obtained 1 176 groups.

Angle uniformity index (Wi)

According to an overall analysis of W i , the structural groups of the Pinus and Quercus genera exhibited contrasting results (Figure 5): on the one hand, Pinus structural groups occurred at all three altitudinal levels, while Quercus groups, only at levels 1 and 2. Quercus registered a mean value of 0.545, with a confidence interval (CI) of 0.498, 0.609; while Pinus obtained a W i =0.527 [CI, 0.493, 0.57] at Level 1, although this difference was not statistically significant. At Level 2, Pinus (W i =0.53 [CI, 0.469, 0.611]) did exhibit a significant difference (d=0.28 [CI, 0.22, 0.35], p<0.001], unlike the Quercus group (W i =0.25 [CI, 0.25, 0.25]).

Figure 5 Angle uniformity index (W i ) by genus and altitude level. 

The specific analysis showed that Pinus species maintain a mean of approximately 0.50, with the exception of P. strobiformis in Level 1, where it exhibited a mean of 0.66 [CI, 0.47-0.84]. It should be noted that P. engelmannii did not occur at sites 2 and 3.

The same trend was observed for the Quercus species, as all four species present had average uniformity values, although the average index for Q. sideroxyla decreased to 0.25 [CI, 0.25-0.25]. The mean uniformity in both genera indicates that two of the four neighboring trees have an angle of less than 90° with respect to the reference tree, resulting in a random distribution.

This index has been applied in forests under conservation near the study area, where both Quercus (=0.47 [CI, 0.39-0.53]), and Pinus (=0.49 [CI, 0.40-0.57]) have a random distribution (García-García et al., 2021). Likewise, Rubio-Camacho et al. (2017) indicate that the average value for two evaluated plots in a pine-oak forest is 0.49. Graciano-Ávila et al. (2020) cite the same distribution in Pinus and Quercus dominated forests in Durango, Mexico.

Species mix index (Mi)

The spatial mix of species also shows contrasting results among the analyzed groups (Figure 6). In first place, Quercus registered a mean value of 0.559 [CI, 0.385, 0.724], while Pinus had a M i =0.545 [CI, 0.432, 0.645] at Level 1, with no statistically significant difference. At Level 2, Pinus (M i =0.673 [CI, 0.509, 0.844]) did exhibit a significant difference (d=0.321 [CI, 0.168, 0.493], p<0.001) in relation to the Quercus group with an M i equal to 1. This indicates that Quercus is surrounded by trees of different genera.

Figure 6 Species mix index (M i ) by genus and altitude level. 

Particularly, the Pinus species with the highest degree of mixing are Pinus strobiformis (P1 =0.87, P2 =0.66 y P3 =0.87) and P. durangensis (P1 =0.86, P2 =0.85 y P3 =1.00), these values indicate that most of the reference trees are surrounded by individuals of species other than the reference tree.

Conversely, P. arizonica (=0.45) and P. engelmannii (=0.36) showed less mixing in P1, while in levels 2 and 3 P. arizonica expanded its mix to =0.66 and =0.71, respectively. Quercus crassifolia Bonpl. (=0.59), Q. fulva Liebm. (=0.73), and Q. rugosa Née (=0.68) exhibited a medium-high degree of mixing in P1, where only Q. sideroxyla had a low degree of mixing (=0.28), that is, it corresponds to a species that is usually surrounded by individuals of the same species or with a tendency to group together.

The mixing index (M i ) has been evaluated in several temperate forests of the country with predominance of Pinus and Quercus, in which lower mean values of mixing than those documented herein have been recorded. In comparison, the forest that is the object of the present study have an outstandingly high diversity and coexistence of species, except for P. arizonica and P. engelmannii in P1, which have a similar or lower value (Castellanos-Bolaños et al., 2010; Graciano-Ávila et al., 2020; Silva-González et al., 2022).

Height dominance index (UHi)

The height dominance index showed that Pinus species tended to be medium to high; its highest average value of UH i of 0.633 [CI, 0.556, 0.705] was recorded at Level 1, while Quercus had 0.396 [CI, 0.305, 0.503]. These differences were statistically significant (d=0.235 [CI, 0.108, 0.357], p<0.01) and were repeated at Level 2 (d=0.293 [CI, 0.204, 0.390], p<0.001) with Pinus as the dominant genus, having a UH i =0.541 [CI, 0.452, 0.632], unlike Quercus, which exhibited a UH i =0.25 [CI, 0.25, 0.25] (Figure 7).

Figure 7 Distribution of the height dominance index (UH i ) of Quercus species by altitudinal level. 

The dominance of P. durangensis stands out, having obtained an average of =0.82, =0.52, and =0.75 for levels 1, 2, and 3, respectively; these values show that when this species is a reference tree, it tends to be taller than its closest neighbors. The rest of the taxa in the three levels had means of 0.41-0.63, with the exception of P. arizonica, whose mean value in P2 (0.34) was low. Quercus species maintained a downward trend, among them Q. sideroxyla obtained the highest mean (=0.42) in P1, which showed that this species regularly has a lower height than its neighbors.

The results obtained herein agree with those reported by other authors, who also evaluated temperate forests, and indicate that structural groups dominated by Pinus are dominant in height (García-García et al., 2021); while Quercus tends to surround itself with much larger neighbors (Rubio-Camacho et al., 2017). A decrease in the mean number of Pinus individuals was observed at levels 2 and 3, which may be due to the fact that at these levels the forest is dominated in density by other genera such as Pseudotsuga and Abies, which tend to be taller (Table 1).

Conclusions

The results of the analysis of the Pinus and Quercus genera along the altitude gradient indicate that they exhibit some significant differences in the uniformity of angles and species mix at altitude Level 2, as well as in the size dominance in terms of height at levels 1 and 2. This is largely due to species composition, which also changes with the gradient; Quercus loses presence and dominance as the altitude rises. The angle uniformity index (W i ) showed that there is a random distribution of Pinus and Quercus, similar to that of other temperate forests in the country, although in this study, at higher altitudes Pinus shows a tendency to regularity. This is also reflected in the species mix (M i ); thus, Pinus individuals tend to mix more with other species with increasing altitude. Finally, according to the size dominance index for height (UH i ), Pinus species are taller than Quercus species throughout the gradient, a characteristic that is observed in several temperate forests in Mexico. This work highlights the relevance of generating more species-specific information through the indices utilized.

Acknowledgements

To the staff of the Comisión Nacional de Áreas Naturales Protegidas (National Commission of Protected Natural Areas) (Conanp)-Dirección Regional Norte y Sierra Madre Occidental (Northern Regional Directorate and Sierra Madre Occidental) for the support provided for the execution of this study at the Flora and Fauna Protection Area Cerro Mohinora in Guadalupe y Calvo, Chihuahua, Mexico.

REFERENCES

Aguirre, O., G. Hui, K. von Gadow and J. Jiménez. 2003. An analysis of spatial forest structure using neighborhood-based variables. Forest Ecology and Management 183(1-3):137-145. Doi: 10.1016/S0378-1127(03)00102-6. [ Links ]

Arriaga, L., J. M. Espinoza, C. Aguilar, E. Martínez, L. Gómez y E. Loa. 2000. Regiones terrestres prioritarias de México. http://www.conabio.gob.mx/conocimiento/regionalizacion/doctos/terrestres.html . (20 de octubre 2023). [ Links ]

Asbeck, T., D. Kozák, A. P. Spinu, M. Mikoláš, V. Zemlerová and M. Svoboda. 2022. Tree-related microhabitats follow similar patterns but are more diverse in primary compared to managed temperate mountain forests. Ecosystems 25:712-726. Doi: 10.1007/s10021-021-00681-1. [ Links ]

Babst, F., O. Bouriaud, B. Poulter, V. Trouet, M. P. Girardin and D. C. Frank. 2019. Twentieth century redistribution in climatic drivers of global tree growth. Science Advances 5(1):eaat4313. Doi: 10.1126/sciadv.aat4313. [ Links ]

Cabrera, O., Á. Benítez, N. Cumbicus, C. Naranjo, … and A. Escudero. 2019. Geomorphology and altitude effects on the diversity and structure of the vanishing montane forest of southern Ecuador. Diversity 11(3):32. Doi: 10.3390/d11030032. [ Links ]

Castellanos-Bolaños, J. F., E. J. Treviño-Garza, O. A. Aguirre-Calderón, J. Jiménez-Pérez y A. Velázquez-Martínez. 2010. Diversidad arbórea y estructura espacial de bosques de pino-encino en Ixtlán de Juárez, Oaxaca. Revista Mexicana de Ciencias Forestales 1(2):39-52. Doi: 10.29298/rmcf.v1i2.636. [ Links ]

Champo-Jiménez, O., L. Valderrama-Landeros y M. L. España-Boquera. 2012. Pérdida de cobertura forestal en la Reserva de la Biósfera Mariposa Monarca, Michoacán, México (2006-2010). Revista Chapingo Serie Ciencias Forestales y del Ambiente 18(2):143-157. Doi: 10.5154/r.rchscfa.2010.09.074. [ Links ]

Chávez-Flores, G. A., J. J. Corral-Rivas, J. D. Vega-Nieva, P. M. López-Serrano y E. A. Rubio-Camacho. 2020. Estructura espacial de los bosques mixtos e irregulares en el estado de Durango. Revista Mexicana de Ciencias Forestales 11(59):141-162. Doi: 10.29298/rmcf.v11i59.614. [ Links ]

Comisión Nacional de Áreas Naturales Protegidas (Conanp). 2017. Programa de Manejo Área de Protección de Flora y Fauna Cerro Mohinora. Secretaría de Medio Ambiente y Recursos Naturales (Semarnat) y Conanp. Miguel Hidalgo, México D. F., México. 192 p. [ Links ]

Dakhil, M. A., Q. Xiong, E. A. Farahat, L. Zhang, … and D. Huang. 2019. Past and future climatic indicators for distribution patterns and conservation planning of temperate coniferous forests in southwestern China. Ecological Indicators 107:105559. Doi: 10.1016/j.ecolind.2019.105559. [ Links ]

Füldner, K. 1995. Strukturbeschreibung von Buchen-Edellaubholz-Mischwäldern. Fakultat fur Forstwissenschaften und Waldokologie. Georg-August-Universität Göttingen. Göttingen, NI, Deutschland. 145 p. [ Links ]

Gadow, K. v. 1999. Waldstruktur und Diversität. Allgemeine Forst und Jagdzeitung 170(7):117-122. https://www.researchgate.net/publication/279647674_Forest_Structure_and_diversity_Waldstruktur_und_Diversitat . (21 de octubre de 2023). [ Links ]

Gadow, K. v., S. Sánchez O. y J. G. Álvarez G. 2007. Estructura y crecimiento del bosque. Universidad de Göttingen. Göttingen, NI, Alemania. 280 p. [ Links ]

Gadow, K., G. Hui und M. Albert. 1998. Das winkelmaß-ein strukturparameter zur beschreibung der individualverteilung in waldbeständen. Centralbl Gesamte Forstwes 115:1-9. https://www.researchgate.net/publication/284044838_Das_Winkelmass_-_Ein_Strukturparameter_zur_Beschreibung_der_Individualverteilung_in_Waldbestanden . (21 de octubre de 2023). [ Links ]

García-Arévalo, A. 2008. Vegetación y flora de un bosque relictual de Picea chihuahuana Martínez del norte de México. Polibotánica (25):45-68. https://polibotanica.mx/index.php/polibotanica/article/view/770 . (21 de octubre de 2023). [ Links ]

García-García, S. A., E. Alanís-Rodríguez, E. A. Rubio-Camacho, O. A. Aguirre-Calderón, E. J. Treviño-Garza y G. Graciano-Ávila. 2021. Patrones de distribución espacial del arbolado en un bosque de Pseudotsuga menziesii en Chihuahua, México. Madera y Bosques 27(3):1-15. Doi: 10.21829/myb.2021.2732242. [ Links ]

Girardin, C. A. J., W. Farfan-Rios, K. Garcia, K. J. Feeley, … and Y. Malhi. 2014. Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant Ecology & Diversity 7(1-2):161-171. Doi: 10.1080/17550874.2013.820806. [ Links ]

Graciano-Ávila, G., E. Alanís-Rodríguez, E. A. Rubio-Camacho, A. Valdecantos-Dema, … y A. Mora-Olivo. 2020. Composición y estructura espacial de cinco asociaciones de bosques de Pinus durangensis. Madera y Bosques 26(2):1-14. Doi: 10.21829/myb.2020.2621933. [ Links ]

Gu, H., J. Li, G. Qi and S. Wang. 2019. Species spatial distributions in a warm-temperate deciduous broad-leaved forest in China. Journal of Forestry Research 31:1187-1194. Doi: 10.1007/s11676-019-00928-7. [ Links ]

Gutiérrez, E. e I. Trejo. 2014. Efecto del cambio climático en la distribución potencial de cinco especies arbóreas de bosque templado en México. Revista Mexicana de Biodiversidad 85(1):179-188. Doi: 10.7550/rmb.37737. [ Links ]

Hui, V. G. Y. und K. von Gadow. 2002. Das Winkelmaß: Herleitung des optimalen Standardwinkels. Allgemeine Forst und Jagdzeitung 173(10):173-177. https://www.researchgate.net/publication/291116943_Das_Winkelmass-Theoretische_iiberlegungen_zum_optimalen_Standardwinkel . (25 de octubre de 2023). [ Links ]

Jadán, O., C. Toledo, B. Tepán, H. Cedillo, ... y C. Vaca. 2017. Comunidades forestales en bosques secundarios alto-andinos (Azuay, Ecuador). Bosque 38(1):141-154. Doi: 10.4067/S0717-92002017000100015. [ Links ]

Jiménez S., M. Á. y J. Méndez G. 2021. Distribución actual y potencial de Pinus engelmannii Carriére bajo escenarios de cambio climático. Madera y Bosques 27(3):1-14. Doi: 10.21829/myb.2021.2732117. [ Links ]

López-Hernández, M. I., J. Cerano-Paredes, S. Valencia-Manzo, E. H. Cornejo-Oviedo, ... y G. Esquivel-Arriaga. 2018. Respuesta del crecimiento de Pinus oocarpa a variables climáticas en Chiapas, México. Revista de Biología Tropical 66(4):1580-1596. Doi: 10.15517/rbt.v66i4.32663. [ Links ]

Luna-Cavazos, M., A. Romero-Manzanares y E. García-Moya. 2008. Afinidades en la flora genérica de piñonares del norte y centro de México: un análisis fenético. Revista Mexicana de Biodiversidad 79(2):449-458. Doi: 10.22201/ib.20078706e.2008.002.555. [ Links ]

Mair, P. and R. Wilcox. 2020. Robust Statistical Methods in R Using the WRS2 Package. Behavior Research Methods 52:464-488. Doi: 10.3758/s13428-019-01246-w. [ Links ]

Martínez-Calderón, V. M., M. E. Siqueiros-Delgado y J. Martínez-Ramírez. 2017. Especies del género Quercus (Fagaceae) presentes en el área natural protegida de Sierra Fría, Aguascalientes, México. Investigación y Ciencia 25(71):12-18. Doi: 10.33064/iycuaa201771336. [ Links ]

Pastorella, F. and A. Paletto. 2013. Stand structure indices as tools to support forest management: an application in Trentino forests (Italy). Journal of Forest Science 59(4):159-168. Doi: 10.17221/75/2012-JFS. [ Links ]

Pérez-Olvera, C. de la P. y R. Dávalos-Sotelo. 2008. Algunas características anatómicas y tecnológicas de la madera de 24 especies de Quercus (encinos) de México. Madera y Bosques 14(3):43-80. Doi: 10.21829/myb.2008.1431206. [ Links ]

Pommerening, A. 2002. Approaches to quantifying forest structures. Forestry: An International Journal of Forest Research 75(3):305-324. Doi: 10.1093/forestry/75.3.305. [ Links ]

Pommerening, A. and D. Stoyan. 2006. Edge-correction needs in estimating indices of spatial forest structure. Canadian Journal of Forest Research 36(7):1723-1739. Doi: 10.1139/x06-060. [ Links ]

Poulos, H. M. and A. E. Camp. 2005. Vegetation-environment relations of the Chisos Mountains, Big Bend National Park, Texas. In: Gottfried, G. J., B. S. Gebow, L. G. Eskew and C. B. Edminster (Comps.). Connecting mountain islands and desert seas: biodiversity and management of the Madrean Archipelago II. United States Department of Agriculture and Forest Service and Rocky Mountain Research Station. Fort Collins, CO, United States of America. pp. 539-544. [ Links ]

R Core Team. 2019. R: A language and environment for statistical computing (Versión: 2023.09.1+494). R Foundation for Statistical Computing. Vienna, W, Austria. R Foundation for Statistical Computing. https://www.r-project.org/ . (25 de octubre 2023). [ Links ]

Rubio-Camacho, E. A., M. A. González-Tagle, W. Himmelsbach, D. Y. Ávila-Flores, E. Alanís-Rodríguez y J. Jiménez-Pérez. 2017. Patrones de distribución espacial del arbolado en un bosque mixto de pino-encino del noreste de México. Revista Mexicana de Biodiversidad 88(1):113-121. Doi: 10.1016/j.rmb.2017.01.015. [ Links ]

Rubio-Camacho, E. A., M. H. K. Hesselbarth, J. G. Flores-Garnica and M. Acosta-Mireles. 2023. Tree mortality in mature temperate forests of central Mexico: a spatial approach. European Journal of Forest Research 142:565-577. Doi: 10.1007/s10342-023-01542-3. [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales (Semarnat). 2019. Modificación del Anexo Normativo III, Lista de especies en riesgo de la Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación, 14 de noviembre de 2019. México D. F., México. https://www.dof.gob.mx/nota_detalle.php?codigo=5578808&fecha=14/11/2019 . (20 de octubre 2023). [ Links ]

Silva-González, E., O. A. Aguirre-Calderón, E. Alanís-Rodríguez, M. A. González-Tagle, E. J. Treviño-Garza y J. J. Corral-Rivas. 2022. Evaluación del aprovechamiento forestal en la diversidad y estructura de un bosque templado en Durango. Revista Mexicana de Ciencias Forestales 13(71):103-132. Doi: 10.29298/rmcf.v13i71.1017. [ Links ]

Thakur, U., N. S. Bisht, M. Kumar and A. Kumar. 2021. Influence of altitude on diversity and distribution pattern of trees in Himalayan temperate forests of Churdhar Wildlife Sanctuary, India. Water, Air, & Soil Pollution 232(5):205. Doi: 10.1007/s11270-021-05162-8. [ Links ]

Tiwari, O. P., C. M. Sharma and Y. S. Rana. 2020. Influence of altitude and slope-aspect on diversity, regeneration and structure of some moist temperate forests of Garhwal Himalaya. Tropical Ecology 61:278-289. Doi: 10.1007/s42965-020-00088-4. [ Links ]

Tropicos. 2022. Tropicos connecting the world to botanical data since 1982 (Tropicos v3.4.2). Missouri Botanical Garden. https://www.tropicos.org/home . (10 de octubre 2023). [ Links ]

Uribe-Salas, D., M. L. España-Boquera y A. Torres-Miranda. 2019. Aspectos biogeográficos y ecológicos del género Quercus (Fagaceae) en Michoacán, México. Acta Botánica Mexicana (126):1-19. Doi: 10.21829/abm126.2019.1342. [ Links ]

Villanueva-Díaz, J., E. A. Rubio-Camacho, Á. A. Chávez-Durán, J. L. Zavala-Aguirre, J. Cerano-Paredes y A. R. Martínez-Sifuentes. 2018. Respuesta climática de Pinus oocarpa Schiede Ex Schetol en el Bosque La Primavera, Jalisco. Madera y Bosques 24(1):1-14. Doi: 10.21829/myb.2018.2411464. [ Links ]

Received: August 28, 2023; Accepted: November 21, 2023

Conflict of interest

Eduardo Alanís Rodríguez, as Section Editor, declares that he did not participate in the editorial process of this document.

Contribution by author

Samuel Alberto García-García, Eduardo Alanís Rodríguez and Ernesto Alonso Rubio-Camacho: study idea, data recording, interpretation of results and writing of the manuscript; Óscar Alberto Aguirre-Calderón and José Israel Yerena-Yamallel: review and analysis of data and writing of the Discussion; Luis Gerardo Cuéllar Rodríguez and Alejandro Collantes Chávez-Costa: general review and drafting of Conclusions.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons