SciELO - Scientific Electronic Library Online

 
vol.56 número5Multivariate analysis of Raman spectra applied to microbiology: Discrimination of microorganisms at the species levelComputation of crack tip elastic stress intensity factor in mode I by in-plane electronic speckle pattern interferometry índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.56 no.5 México oct. 2010

 

Investigación

 

Ecological performance optimization of a thermoacoustic heat engine

 

Lingen Chena,*, Xuxian Kana,b, Fengrui Sunª, Feng Wua,b, and Fangzhong Guoc

 

ª Postgraduate School, Naval University of Engineering, Wuhan 430033, P.R. China.

b School of Science, Wuhan Institute of Technology, Wuhan 430073, P.R. China.

c School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China.

 

*To whom all correspondence
should be addressed;

Fax: 0086–27–83638709
Tel: 0086–27–83615046,
e–mail address: lgchenna@yahoo.com,
lingenchen@hotmail.com

 

Recibido el 23 de febrero de 2010
Aceptado el 29 de julio de 2010

 

Abstract

Ecological performance optimization of a generalized irreversible thermoacoustic heat engine with heat resistance, heat leakage, thermal relaxation and internal dissipation, in which heat transfer between the working fluid and heat reservoirs obeys a complex generalized heat transfer law Q Δ (T)n –where n is a complex–, is investigated in this paper. Both the real part and the imaginary part of the complex heat transfer exponent change the optimal ecological function versus efficiency relationship, quantitatively. The analytical formulas about the ecological function and thermal efficiency of the thermoacoustic heat engine are derived. Furthermore, the comparative analysis of the influences of various factors on optimal performance of the generalized irreversible thermoacoustic heat engine is carried out by detailed numerical examples. The optimal zone on the performance of the thermoacoustic heat engine is obtained by numerical analysis. The results obtained herein can provide some theoretical guidelines for the design of real thermoacoustic engines.

Keywords: Thermoacoustic heat engine; complex heat transfer exponent; ecological optimization; finite–time thermodynamics.

 

Resumen

En este artículo se investigan la optimización del desempeño ecológico de un motor termoacístico irreversible generalizado con resistencia térmica, fugas de calor, relajación térmica y disipación interna, en el que la transferencia de calor entre el fluido de trabajo y el reservorio (recipiente) de calor obedece a una ley de transferencia de calor compleja generalizada [], donde n es complejo. La parte imaginaria y la parte real del exponente complejo de la transferencia de calor cambian cuantitativamente a la función ecológica óptima vs la relación de eficiencia. Se obtienen las fórmulas analíticas de la función ecológica y la eficiencia térmica del motor termoacústico. Asimismo, se hace un análisis comparativo de la influencia de varios factores cuando el desempeño del motor termoacústico irreversible generalizado es óptimo con ejemplos numéricos detallados. Se obtiene la zona óptima del desempeño del motor termoacústico por análisis numérico. Los resultados obtenidos proveen guías teóricas para el diseño de motores termoacústicos.

Descriptores: Motor térmico termoacústico; exponente complejo de transferencia de calor; optimización ecológica; termodinámica de tiempo finito.

 

PACS: 05.70.Ln; 07.20.Pe; 05.07.–a

 

DESCRAGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This paper is supported by The National Natural Science Fund of P. R. China (Project No.50676068), the Program for New Century Excellent Talents in University of P.R. China (Project No. NCET–04–1006), Hubei provincial department of education, P.R. China (project No. D200615002) and the Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (Project No. 200136). The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

 

References

1. G.W. Swift, J. Acoust. Soc. Am. 84 (1988) 1145.         [ Links ]

2. P.H. Ceperly, J. Acoust. Soc. Am. 7 (1982) 1239.         [ Links ]

3. T. Yazaki, A. Iwata, T. Mackawa, and A. Tominaga, Physical Review Letters 81 (1998) 3128.         [ Links ]

4. S. Back and G.W. Swift, Nature 399 (1999) 335.         [ Links ]

5. F. Wu, L. Chen, F. Sun, and Q. Li, Acoustic technology 17 (1998) 186 (in Chinese).         [ Links ]

6. F. Wu, C. Wu, F. Guo, Q. Li, and L. Chen, Entropy (2003) 5 444.         [ Links ]

7. L. Chen, F. Wu, Q. Li, F. Guo, and A. Su, Proc. IMechE, Part C: Mech. Engng. Sci. 221 (2007) 1339.         [ Links ]

8. B. Andresen, Finite–Time Thermodynamics (Physics Laboratory II, University of Copenhagen, 1983).         [ Links ]

9. S. Sieniutycz and P. Salamon, Advances in Thermodynamics, Volume 4: Finite Time Thermodynamics and Thermoeconomics (New York: Taylor & Francis, 1990).         [ Links ]

10. A. Bejan, J. Appl. Phys. 79 (1996) 1191.         [ Links ]

11 . L. Chen, C. Wu, and F. Sun, J. Non–Equilib. Thermodyn. 24 (1999) 327.         [ Links ]

12. R.S.Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, and A.M. Tsirlin, Thermodynamic Optimization of Finite Time Processes (Chichester: Wiley, 1999).         [ Links ]

13. D. Ladino–Luna, Rev. Mex. Fis. 48 (2002) 575.         [ Links ]

14. D. Ladino–Luna, Rev. Mex. Fis. 49 (2003) 87.         [ Links ]

15. L. Chen and F. Sun, Advances in Finite Time Thermodynamics Analysis and Optimization (New York: Nova. Science Publishers, 2004).         [ Links ]

16. D. Ladino–Luna and R.T. Paez–Hernandez, Rev. Mex. Fis. 51 (2005) 54.         [ Links ]

17. G. Aragon–Gonzalez, A. Canales–Palma, A. Lenon–Galicia, and M. Musharrafie–Martinez, Rev. Mex. Fis. (2005) 51 32.         [ Links ]

18. A. Durmayaz, O.S. Sogut, B. Sahin, and H. Yavuz, Progress Energy & Combustion Science 30 (2004) 175.         [ Links ]

19. L. Chen, Finite–Time Thermodynamic Analysis of Irreversible Processes and Cycles (Higher Education Press, Beijing, 2005).         [ Links ]

20. M.A. Barranco–Jimenez and F. Angulo–Brown, J. Energy Institute (2007) 80 232.         [ Links ]

21. M. Feidt, Int. J. Exergy 5 (2008) 500.         [ Links ]

22. C.A. Herrera, M.E. Rosillo, and L. Castano, Rev. Mex. Fis. 5 (2008) 118.         [ Links ]

23. B. Andresen, The need for entropy in finite–time thermodynamics and elsewhere. Meeting the Entropy Challenge: An International Thermodynamics Symposium in Honor and Memory of Professor Joseph H. Keenan, AIP Conference Proceedings 1033 (2008)213.         [ Links ]

24. L. Chen, H. Song, F. Sun, and S. Wang Rev. Mex. Fis. 55 (2009) 55.         [ Links ]

25. Y. Bi, L. Chen, and F. Sun, Rev. Mex. Fis. 55 (2009) 112.         [ Links ]

26. G. Tao, L. Chen, and F. Sun, Rev. Mex. Fiis. 55 (2009) 192.         [ Links ]

27. M.A. Barranco–Jimenez, Rev. Mex. Fis. 55 (2009) 211.         [ Links ]

28. L. Chen, F. Meng, and F. Sun, Rev. Mex. Fiis. 55 (2009) 282.         [ Links ]

29. S. Xia, L. Chen, and F. Sun, Rev. Mex. Fis. 55 (2009) 399.         [ Links ]

30. S. Sieniutycz and J. Jezowski, Energy Optimization in Process Systems (Elsevier, Oxford, UK, 2009).         [ Links ]

31. F. Angulo–Brown, J. Appl. Phys. 69 (1991) 7465.         [ Links ]

32. Z. Yan, J. Appl. Phys. 73 (1993) 3583.         [ Links ]

33. L. Chen, F. Sun, and W. Chen, J. Engng. Thermal EnergyPow. 9 (1994)374 (in Chinese).         [ Links ]

34. L. Chen, J. Zhou, F. Sun, and C. Wu, Appl. Energy77 (2004) 327.         [ Links ]

35. L. Chen, X. Zhu, F. Sun, and C. Wu, J. Phys. D: Appl. Phys. 38 (2005) 113.         [ Links ]

36. L. Chen, X. Zhu, F. Sun, and C. Wu, Appl. Energy 84 (2007) 78.         [ Links ]

37. L.A. Arias–Hernandez and F. Angulo–Brown, J. Appl. Phys. 81 (1997) 2973.         [ Links ]

38. F. Angulo–Brown, L.A. Arias–Hernandez, and Paez–Hernandez, J Phys. D: Appl. Phys. 32 (1999) 1415.         [ Links ]

39. C.Y. Cheng and C.K. Chen, Energy Convers. Mgmt. 39 (1998) 33.         [ Links ]

40. S.K. Tyagi, S.C. Kaushik, and R. Salhotra, J. Phys. D: Appl. Phys. 35 (2002) 2668.         [ Links ]

41. S.K. Tyagi, J. Chen, and S.C. Kaushik, Int. J. Exergy 2 (2005) 90.         [ Links ]

42. Y. Ust, A. Safa, and B. Sahin, Appl. Energy 80 (2005) 247.         [ Links ]

43. Y. Tu, L. Chen, F. Sun, and C. Wu, Int. J. Exergy 3 (2006) 191.         [ Links ]

44. L. Chen, X. Zhu, F. Sun, and C. Wu, Appl. Energy83 (2006) 573.         [ Links ]

45. X. Zhu, L. Chen, F. Sun, and C. Wu, Int. J. Ambient Energy 24 (2003) 189.         [ Links ]

46. X. Zhu, L. Chen, F. Sun, and C. Wu, Open Systems & Information Dynamics 12 (2005) 249.         [ Links ]

47. T.H. Chen, J. Physics D: Appl. Phys. 39 (2006) 1442.         [ Links ]

48. M.A. Barranco–Jimenez, J.C. Chimal–Eguía, and F. Angulo–Brown, Rev. Mex. Fiis. 52 (2006) 205.         [ Links ]

49. M.A. Barranco–Jimenez and F. Angulo–Brown, J Energy Institute 80 (2007) 96.         [ Links ]

50. M.A. Barranco–Jimenez and F. Angulo–Brown, J Energy Institute 80 (2007) 232.         [ Links ]

51. D. Ladino–Luna, J. Energy Institute 81 (2008) 114.         [ Links ]

52. M.A. Barranco–Jiménez and N. Sánchez–Salas, J. Energy Institute 81 (2008) 164.         [ Links ]

53. L.A. Arias–Hernandez, M.A. Barranco–Jiménez, and F. Angulo–Brown, J. Energy Institute 82 (2009) 223.         [ Links ]

54. X. Liu, L. Chen, F. Wu, and F. Sun, Physica Scripta 81 (2010) 025003.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons