SciELO - Scientific Electronic Library Online

 
vol.53 número2A New Mechanism to Explain the Near-Ir Variability of the Transitional Disk of GM AurApproximate Analytical Solutions to the Relativistic Isothermal Gas Spheres índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de astronomía y astrofísica

versión impresa ISSN 0185-1101

Rev. mex. astron. astrofis vol.53 no.2 Ciudad de México oct. 2017  Epub 21-Oct-2019

 

Artículos

Observations and Light Curve Solutions of Six Deep-Contact W UMA Binaries

Diana P. Kjurkchieva1 

Velimir A. Popov2 

Doroteya L. Vasileva1 

Nikola I. Petrov3 

1 Department of Physics, Shumen University, 9700 Shumen, Bulgaria (d.kyurkchieva@shu.bg, d.vasileva@shu.bg).

2 IRIDA Observatory, Rozhen NAO, Bulgaria (velimir.popov@elateobservatory.com).

3 Institute of Astronomy and NAO, Bulgarian Academy of Sciences, Tsarigradsko shossee 72, 1784 Sofia, Bulgaria (nip.sob@gmail.com).


ABSTRACT

This work presents photometric observations of the W UMa binaries V0637 Peg. V0473 Cam, CSS J153314.8+560527, CSS J075258.0+382035, V0416 Gem and NSVS 6859986, made using Sloan g and i filters. The periods of these binaries are in the range of 0.26-0.43 d. The light curve solutions revealed that the components of each binary system are almost equal in temperature. The stellar components are of G and K spectral types and undergo total eclipses. All observation targets have deep-contact configurations with a fill-out factor of f ≥ 0.5. NSVS 6859986 has one of the highest fill-out factors that have been determined, f = 0.84. We studied the empirical dependencies between the fill-out factor and the stellar parameters (temperature, period, mass ratio, relative component radii, and luminosity ratio) in a sample of around thirty stars; they are consistent with theoretical predictions, although there are deviations from the main tendencies.

Key Words: binaries: eclipsing; binaries: close; stars; fundamental parameters

RESUMEN

Se presentan observaciones fotométricas de las binarias tipo W UMa V0637 Peg. V0473 Cam, CSS J153314.8+560527, CSS J075258.0+382035, V0416 Gem y NSVS 6859986, con los filtros g y i del Sloan. Sus períodos están comprendidos entre 0.26 y 0.46 días. Las soluciones a las curvas de luz revelan que ambas componentes tienen temperaturas casi iguales. Las componentes son de tipos G y K, y presentan eclipses totales. Todos los sistemas tienen configuraciones de contacto profundo, con factores de llenado f ≥ 0.5. NSVS 6859986 tiene uno de los mayores factores de llenado conocidos, f =0.84. Estudiamos las dependencias empíricas entre el factor de llenado y los parámetros estelares (temperatura, período, cociente de masas, radios relativos de las componentes, y cociente de sus luminosidades) para una muestra de alrededor de 30 estrellas. Encontramos buena concordancia con las predicciones teóricas, pese a algunas desviaciones.

1. INTRODUCTION

W UMa type stars are binaries of spectral type F0-K5 whose components have nearly equal surface temperatures and luminosities, despite their often greatly different masses (Binnendijk 1965). The model of Lucy (1968a, b) explained this effect by a common envelope (CE). The orbital motion of the two stellar components inside this envelope makes them lose angular momentum and eventually spiral towards each other (Webbink 1984, Qian 2003, Willems & Kolb 2004, Stepien 2006, Ivanova et al. 2013).

The PLC relationships of W UMa stars, combined with their ease of detection, make these binaries useful distance tracers (Klagyivik & Csizmadia 2004, Gettel et al. 2006, Eker et al. 2008). But the more important aspect of W UMa stars for modern astrophysics is that they provide information about the processes that drive tidal interactions, mass loss and mass transfer, angular momentum loss, and the merging of stars (Martin et al. 2011). Stellar mergers have been considered as a plausible origin of stellar eruptions of the V838 Mon (Munari et al. 2002) and V1309 Sco types (Rasio & Shapiro 1995, Tylenda et al. 2011, Zhu et al. 2016). However, the question of when the CE phase leads to the ejection of the envelope (and a tighter binary) and when to a star merger remains without answer. Hence, this short-lived phase is one of the most important unsolved problems in stellar evolution.

Developing a binary evolutionary model requires knowing the fundamental parameters of the components stars. W UMa binaries, especially those that undergo total eclipses, are the most important sources of such information. Moreover, the study of deep-contact binaries may throw light on the fate of all types of binaries.

This work presents photometric observations and light curve solutions of six deep-contact W UMa binaries: V0637 Peg (ASAS 222153+2802.8; GSC 02226-02148; UCAC4 591-134612; 2MASS J22215338+2802471), V0473 Cam (GSC 04530-01042; 2MASS J07170493+7710260; UCAC4 836-008955), CSS J153314.8+560527 (2MASS J15331471+5605280; UCAC4 731053285; GSC 03872-00076, and CSS J153314), CSS J075258.0+382035 (UCAC4 642042673, 2MASS J07513566+3820286, and CSS J075258), V0416 Gem (GSC 01356-02826; ASAS J065947+2229.9) and NSVS 6859986 (GSC 02397-00333; 2MASS J05114146+3531357; UCAC4 628-022051). Table 1 shows the coordinates of our observation targets and the information available on their light variability.

Table 1 Parameters of our observation targets taken from the VSX database 

Target RA Dec Period
[d]
mag Ampl
[mag]
Type
V0637 Peg 22 21 53.40 +28 02 47.0 0.311791 12.45(CV) 0.77 EW
V0473 Cam 07 17 04.93 +77 10 26.1 0.298438 11.55(R1) 0.65 EW
CSS J153314 15 33 14.71 +56 05 28.2 0.264594 12.81(CV) 0.47 EW
CSS J075258 07 52 58.09 +38 20 35.3 0.429914 13.07(CV) 0.37 EW
V0416 Gem 06 59 47.31 +22 29 48.6 0.256250 12.70(V) 0.50 EW
NSVS 6859986 05 11 40.85 +35 31 33.2 0.38356914 12.40(R1) 0.68 EW

2. OBSERVATIONS

The CCD photometric observations of the observation targets in the Sloan g ,i filters were performed at the Rozhen Observatory using the 30-cm Ritchey Chretien Astrograph (located in the IRIDA South dome) with an ATIK 4000 M CCD camera (2048 × 2048 pixels, 7.4µm/pixel, field of view 35 × 35 arcmin). Table 2 shows information of our observations.

Table 2 Log of our photometric observations 

Target Date Exposure (g' , i')
[sec]
Number (g' ,i') Error (g' , i')
[mag]
V0637 Peg 2016 Sep 22 120, 120 62, 62 0.006, 0.008
2016 Sep 23 120, 120 79, 78 0.004, 0.006
2016 Sep 24 120, 120 101, 99 0.006, 0.009
V0473 Cam 2015 Jan 1 60, 90 120, 120 0.003, 0.003
2015 Jan 3 60, 90 39, 38 0.006, 0.006
CSS J153314 2016 Jun 20 120, 120 69, 68 0.007, 0.009
2016 Jun 21 120, 120 62, 62 0.006, 0.008
CSS J075258 2016 Feb 9 180, 240 38, 39 0.003, 0.006
2016 Feb 15 180, 240 63, 62 0.004, 0.006
2016 Feb 28 180, 240 35, 34 0.004, 0.007
2016 Mar 6 180, 240 36, 34 0.003, 0.006
2016 Feb 17 180, 240 48, 48 0.004, 0.006
2016 Feb 18 180, 240 59, 58 0.006, 0.008
V0416 Gem 2016 Dec 3 60, 90 48, 48 0.010, 0.013
2016 Dec 4 60, 90 85, 85 0.005, 0.006
2016 Dec 5 60, 90 125, 125 0.005, 0.006
2016 Dec 6 60, 90 31, 31 0.005, 0.006
2016 Dec 8 60, 90 32, 32 0.005, 0.007
2016 Dec 9 60, 90 87, 87 0.005, 0.007
2016 Dec 10 60, 90 165, 165 0.005, 0.007
NSVS 6859986 2016 Nov 24 60, 90 132, 132 0.004, 0.005
2016 Nov 25 60, 90 91, 91 0.004, 0.006
2016 Nov 27 60, 90 139, 139 0.009, 0.011

The data were obtained during photometric nights with seeing in the range of 1.1-1.9 arcsec. The airmass of the observations of all targets was within the range 1.01-2.01. Twilight flat fields were obtained through each filter, as well as dark and bias frames. The frames were combined into a single master bias, and dark and flat frames. The reduction of the photometric data was done using the standard procedure (de-biasing, dark-frame subtraction and flat-fielding) with the software AIP4WIN v.2.0 (Berry & Burnell 2006).

For the stellar images, we used aperture photometry with a radius of 1.5 FWHM as well as sky background measurements in an annulus encompassing a comparable area. The light variability of the observation targets was estimated by comparing it with nearby (constant) stars in the observed field of each target (ensemble photometry). A check star served to determine the observational accuracy and to verify the constancy of the comparison stars. CCD ensemble photometry calculates the difference between the instrumental magnitude of the target and a comparison magnitude obtained from the mean of the intensities of the chosen comparison stars. The use of numerous comparison stars increases considerably the statistical accuracy of the comparison magnitude (Gilliland & Brown 1988, Honeycutt 1992).

We performed the ensemble aperture photometry with the software VPHOT (https://www.aavso.org/vphot). Table 3 shows the coordinates of the comparison and check stars, taken from the UCAC4 catalogue (Zacharias et al. 2013); their magnitudes were taken from the APASS DR9 catalogue (Henden et al. 2016). According to the VSX database, the stars CSS J153314.8+560527 and NSVS 2808700 are very close in position and have almost equal periods. Our observations revealed that the second star is not variable.

Table 3 List of the standard stars 

Label Star ID RA Dec g i
Target V0637 Peg 22 21 53.40 +28 02 47.00 13.24 12.24
Chk UCAC4 591-134602 22 21 47.14 +28 05 28.21 14.360 13.201
C1 UCAC4 590-134319 22 21 58.53 +27 57 39.13 13.700 13.190
C2 UCAC4 590-134268 22 21 27.93 +27 58 29.23 14.206 13.301
C3 UCAC4 590-134302 22 21 48.22 +27 59 26.26 13.982 13.359
C4 UCAC4 591-134550 22 21 15.51 +28 04 13.34 13.539 12.884
C5 UCAC4 591-134590 22 21 38.84 +28 05 26.42 13.229 12.297
C6 UCAC4 591-134573 22 21 31.08 +28 07 20.65 13.213 12.615
C7 UCAC4 591-134594 22 21 41.55 +28 08 12.48 13.318 12.713
C8 UCAC4 591-134609 22 21 51.23 +28 08 03.18 13.773 13.106
C9 UCAC4 591-134625 22 21 59.90 +28 05 28.35 13.329 12.661
C10 UCAC4 590-134318 22 21 57.52 +27 55 26.19 13.479 12.254
Target V0473 Cam 07 17 04.93 +77 10 26.10 11.860 11.101
Chk UCAC4-837-008887 07 17 11.21 +77 12 38.47 12.231 11.248
C1 UCAC4-837-008919 07 19 47.76 +77 17 47.18 12.650 12.049
C2 UCAC4-837-008907 07 18 47.34 +77 18 04.02 12.386 11.084
C3 UCAC4-837-008861 07 15 04.93 +77 17 40.46 12.664 11.738
C4 UCAC4-837-008897 07 18 12.24 +77 15 46.18 13.047 11.812
C5 UCAC4-836-008980 07 19 10.50 +77 10 27.41 13.049 12.201
C6 UCAC4-836-008968 07 18 01.77 +77 11 57.23 12.428 11.966
C7 UCAC4-836-008948 07 16 26.49 +77 05 33.45 13.243 12.059
C8 UCAC4-836-008929 07 15 08.62 +77 09 09.54 12.003 11.303
Target CSS J153314 15 33 14.71 +56 05 28.25 12.981 12.076
Chk UCAC4 731-053305 15 34 24.40 +56 04 59.16 14.041 12.736
C1 UCAC4 731-053289 15 33 23.47 +56 05 26.31 12.567 11.645
C2 UCAC4 731-053282 15 33 03.52 +56 07 03.97 13.202 12.249
C3 UCAC4 731-053294 15 33 38.81 +56 10 18.03 12.473 11.881
C4 UCAC4 731-053302 15 34 05.08 +56 02 54.73 12.803 12.067
C5 UCAC4 730-053151 15 33 43.32 +55 59 24.05 12.976 12.507
C6 UCAC4 730-053123 15 32 23.54 +55 56 07.04 11.544 11.043
C7 UCAC4 732-053671 15 33 00.50 +56 15 00.72 10.806 9.762
Target CSS J075258 07 52 58.09 +38 20 35.30 13.205 12.746
Chk UCAC4 643-044185 07 51 20.51 +38 34 24.58 14.121 13.686
C1 UCAC4 643-044208 07 51 47.59 +38 35 55.44 14.120 13.657
C2 UCAC4 643-044212 07 51 49.87 +38 35 24.70 14.660 13.681
C3 UCAC4 643-044217 07 51 54.27 +38 32 17.07 14.572 13.818
C4 UCAC4 643-044225 07 52 03.85 +38 32 23.81 14.709 14.018
C5 UCAC4 643-044233 07 52 15.03 +38 31 48.84 13.911 13.311
C6 UCAC4 643-044248 07 52 40.64 +38 32 08.27 14.134 13.686
C7 UCAC4 643-044271 07 53 09.97 +38 31 21.83 13.671 13.366
C8 UCAC4 643-044218 07 51 54.46 +38 29 44.02 14.346 13.859
Target V0637 Peg 22 21 53.40 +28 02 47.00 13.24 12.24
Chk UCAC4 591-134602 22 21 47.14 +28 05 28.21 14.360 13.201
C1 UCAC4 590-134319 22 21 58.53 +27 57 39.13 13.700 13.190
C2 UCAC4 590-134268 22 21 27.93 +27 58 29.23 14.206 13.301
C3 UCAC4 590-134302 22 21 48.22 +27 59 26.26 13.982 13.359
C4 UCAC4 591-134550 22 21 15.51 +28 04 13.34 13.539 12.884
C5 UCAC4 591-134590 22 21 38.84 +28 05 26.42 13.229 12.297
C6 UCAC4 591-134573 22 21 31.08 +28 07 20.65 13.213 12.615
C7 UCAC4 591-134594 22 21 41.55 +28 08 12.48 13.318 12.713
C8 UCAC4 591-134609 22 21 51.23 +28 08 03.18 13.773 13.106
C9 UCAC4 591-134625 22 21 59.90 +28 05 28.35 13.329 12.661
C10 UCAC4 590-134318 22 21 57.52 +27 55 26.19 13.479 12.254
Target V0473 Cam 07 17 04.93 +77 10 26.10 11.860 11.101
Chk UCAC4-837-008887 07 17 11.21 +77 12 38.47 12.231 11.248
C1 UCAC4-837-008919 07 19 47.76 +77 17 47.18 12.650 12.049
C2 UCAC4-837-008907 07 18 47.34 +77 18 04.02 12.386 11.084
C3 UCAC4-837-008861 07 15 04.93 +77 17 40.46 12.664 11.738
C4 UCAC4-837-008897 07 18 12.24 +77 15 46.18 13.047 11.812
C5 UCAC4-836-008980 07 19 10.50 +77 10 27.41 13.049 12.201
C6 UCAC4-836-008968 07 18 01.77 +77 11 57.23 12.428 11.966
C7 UCAC4-836-008948 07 16 26.49 +77 05 33.45 13.243 12.059
C8 UCAC4-836-008929 07 15 08.62 +77 09 09.54 12.003 11.303
Target CSS J153314 15 33 14.71 +56 05 28.25 12.981 12.076
Chk UCAC4 731-053305 15 34 24.40 +56 04 59.16 14.041 12.736
C1 UCAC4 731-053289 15 33 23.47 +56 05 26.31 12.567 11.645
C2 UCAC4 731-053282 15 33 03.52 +56 07 03.97 13.202 12.249
C3 UCAC4 731-053294 15 33 38.81 +56 10 18.03 12.473 11.881
C4 UCAC4 731-053302 15 34 05.08 +56 02 54.73 12.803 12.067
C5 UCAC4 730-053151 15 33 43.32 +55 59 24.05 12.976 12.507
C6 UCAC4 730-053123 15 32 23.54 +55 56 07.04 11.544 11.043
C7 UCAC4 732-053671 15 33 00.50 +56 15 00.72 10.806 9.762
Target CSS J075258 07 52 58.09 +38 20 35.30 13.205 12.746
Chk UCAC4 643-044185 07 51 20.51 +38 34 24.58 14.121 13.686
C1 UCAC4 643-044208 07 51 47.59 +38 35 55.44 14.120 13.657
C2 UCAC4 643-044212 07 51 49.87 +38 35 24.70 14.660 13.681
C3 UCAC4 643-044217 07 51 54.27 +38 32 17.07 14.572 13.818
C4 UCAC4 643-044225 07 52 03.85 +38 32 23.81 14.709 14.018
C5 UCAC4 643-044233 07 52 15.03 +38 31 48.84 13.911 13.311
C6 UCAC4 643-044248 07 52 40.64 +38 32 08.27 14.134 13.686
C7 UCAC4 643-044271 07 53 09.97 +38 31 21.83 13.671 13.366
C8 UCAC4 643-044218 07 51 54.46 +38 29 44.02 14.346 13.859

The transformation of the instrumental magnitudes into standard ones was done manually. For this, we used the mean color of the ensemble comparison star g'-i'- and the transformation coefficients of our equipment (Kjurkchieva et al. 2017).

Tables 8-13 in the Appendix show the templates derived from our photometric data (full tables are available at the CDS, /CatS/217.174.158.82 : 004.)

3. LIGHT CURVE SOLUTIONS

The IRIDA light curves of the observation targets were solved using the PHOEBE code (Prsa & Zwitter, 2005), which is based on the Wilson-Devinney (WD) code (Wilson & Devinney 1971, Wilson 1979, 1993) but has some improvements such as a graphical user interface and updates such as the Sloan filters used in our observations.

The target temperatures T m were determined (Table 5) from their infrared color indices (J-K), taken from the 2MASS catalog, and the colortemperature calibration of Tokunaga (2000).

Table 4 Values of the fitted parameters 

Star T 0 q i T 2
V0637 Peg 2457372.21954(5) 2.73(3) 0.501(1) 88(4) 4587(32)
V0473 Cam 2457024.41640(3) 2.66(2) 0.47(3) 84.7(8) 5100(41)
CSS J153314 2457560.42347(7) 5.7(3) 2.6(2) 86(1) 4933(567)
CSS J075258 2457434.43750(8) 9.5(2) 5.6(1) 84.3(6) 6070(23)
V0416 Gem 2457726.45333(9) 10.8(2) 6.7(2) 73.2(7) 5420(294)
NSVS 6859986 2457718.50448(9) 8.3(3) 4.8(3) 89(1) 5100(680)

Table 5 Calculated parameters 

Star Tm T1f T2f r 1 r 2 f l2/l1
V0637 Peg 4903 4997(50) 4681(40) 0.479(1) 0.361(1) 0.504 0.429
V0473 Cam 5300 5361(50) 5161(60) 0.487(1) 0.357(1) 0.539 0.459
CSS J153314 4933 4933(567) 4933(567) 0.340(1) 0.504(2) 0.566 2.268
CSS J075258 6203 6227(60) 6094(50) 0.273(1) 0.560(2) 0.630 3.851
V0416 Gem 5420 5420(294) 5420(294) 0.259(1) 0.573(2) 0.651 5.058
NSVS 6859986 5100 5100(616) 5100(616) 0.302(1) 0.560(2) 0.864 3.756

The initial runs revealed that all observation targets are overcontact systems. Thus, we used the “Overcontact Binary not in Thermal Contact” mode of the code. The fit quality was estimated based on the value χ 2.

First, we fixed T 1 = T m and varied the initial epoch T 0 and period P to fit the light curves to the phases of light minima and maxima. Afterwards, we fixed T 0 and P, and varied simultaneously the secondary temperature T 2, the orbital inclination i, the mass ratio q and the potential Ω to try to reproduce complete light curves. The data in the i and g bands were modelled simultaneously.

We used gravity brightening coefficients of g 1 = g 2 = 0.32 and reflection effect coefficients of A 1 = A 2 = 0.5, which are appropriate for late-type stars; the linear limb-darkening coefficients for each component and each color were updated according to the tables of Van Hamme (1993). Solar metallicity was assumed for the targets because they consist of late stars from the solar vicinity.

In order to reproduce the light curve anomalies, we used cool spots. Varying the parameters of these spots (longitude λ, angular size α and temperature factor κ) simultaneously with the other configuration parameters often led to non-physical values. This is why the spot parameters were adjusted “manually” (within reasonable ranges). Due to the ambiguousness of the solution of the inverse problem, we chose almost equatorial spots on the primary stars because they have the smallest size and temperature contrast required to fit a given light curve distortion.

After finding the best solution we varied all parameters together (T 2, i, q, Ω, T 0 and P) around the values from the last run and obtained the final model.

In order to adjust the stellar temperatures T1f and T2f, around the value T m , we used the following formulae (Ivanov et al. 2010):

T1f=Tm+cTc+1 (1)

T2f=T1-T (2)

where c = l 2 /l 1 (luminosity ratio) and ∆T = T m T 2 were taken from the final PHOEBE fit.

Although PHOEBE (as well as WD) works with potentials, it allows to calculate directly the values (polar, point, side, and back) of the relative radius r i = R i /a of each component (R i is the linear radius and a is orbital separation). In the absence of radial velocity curves, we chose as default a = 1. Moreover, PHOEBE yields the bolometric magnitudes Mbol1 of the two component stars in conditional units (when radial velocity data are not available). Their difference Mbol2-Mbol1 determines the true luminosity ratio c = L 2 /L 1 = l 2 /l 1. The fill-out factor f = [Ω − Ω(L 1)]/[Ω(L 2) − Ω(L 1)] can also be calculated from the output parameters of the PHOEBE solution.

Table 4 shows the final values of the fitted stellar parameters and their uncertainties: initial epoch T 0; mass ratio q; inclination i; potential Ω; secondary temperature T 2. The mass ratios correspond to the ratio between the mass of the primary component and the mass of the star eclipsed at MinI. The orbital periods P from Table 1 fitted our data well.

Table 5 shows the following calculated parameters: stellar temperatures T1,2f; stellar radii r 1,2 (back values); fill-out factor f ; stellar luminosity ratio l 2 /l 1. Their errors are determined from the uncertainties of the output parameters used for the calculation. Table 6 shows information on the spot parameters and their uncertainties.

Table 6 Parameters of the surface spots 

star β
[o]
λ
[o]
α
[o]
k
V0473 Cam 70(5) 200(2) 12(0.5) 1.1(0.1)
CSS J153314 90(5) 100(2) 25(1) 0.9(0.1)
V0416 Gem 90(5) 310(2) 24(1) 0.8(0.1)

The synthetic light curves corresponding to our solutions are shown in Figure 1 as continuous lines. At most phases, the residuals do not affect the observational precision (see Table 1) but they are larger during the eclipses of some targets (especially the primary eclipses of V0637 Peg and V0473 Cam). Attempts to improve the fits by introducing nonlinear limb-darkening laws (logarithmic and square root) and arbitrarily varying the limb-darkening coefficients arbitrary were unsuccessful. We suspect that the reason for this are numerical imprecisions in the physical model of deep-contact binaries. It should be pointed out that this behavior of the residual curves can be observed even in some Kepler binaries (Hambleton et al. 2013, Lehmann et al. 2013, Maceroni et al. 2014). Kipping (2010) attributed it to the effects of finite integration time, while Prsa et al. (2016) attributed it to an inadequate treatment of overcontact binaries, especially of their neck regions.

Fig. 1 The folded light curves of the observation targets with their fits and residuals (shifted vertically by different amounts to save space). 

The main results of our model are as follows: (i) All observation targets undergo total eclipses, which means that their photometric mass ratios can be determined with great confidence (Terrell & Wilson 2005); (ii) the components of each target are almost equal in temperature and are of the G and K spectral types (Table 5); (iii) All targets have deep-contact configurations (Figure 2, Table 5) with a fill-out factor f > 0.5 that reaches f = 0.84 for NSVS 6859986; (iv) The values of l 2 /l 1 ,q,r 2 /r 1 shown in Tables 4- 5 confirm the assumption that the luminosity ratio for deep-contact binaries (whose components have equal temperatures) depends on the squared ratio of the components’ radii but not on the mass ratio. This means that the empirical relation between the global parameters of deep-contact binaries are different from those of MS stars.

Fig. 2 3D configurations of the targets. 

4. DEEP-CONTACT BINARIES

In order to study the dependencies between the fill-out factor and the stellar parameters of deepcontact systems, as well as to verify if they correspond to theoretical predictions, we performed a statistical analysis of our targets and several tens of well studied overcontact systems (Table 7). For targets with q > 1, we changed the order of the components, which means that: (i) the mass ratios were substituted by their inverse values; (ii) the luminosity ratios were substituted by their inverse values; (iii) the relative radii and temperatures of the stellar components were exchanged for each other. For targets with more than one solution, we used the newest one (e.g. FG Hya).

Table 7 Parameters of deep-contact binaries sorted by increasing fillout factor 

star Tm P q r 1 r 2 f l2/l1 Ref
DN Cam 6600 0.498 0.442 5.319 0.523 0.39 0.33 0.53 1
EK Com 5200 0.267 0.35 2.501 0.523 0.344 0.33 0.449 2
EX Leo 6200 0.408 0.2 2.186 0.545 0.257 0.35 0.206 3
FP Boo 6600 0.640 0.096 1.922 0.631 0.247 0.38 0.105 4
BX Dra 7100 0.579 0.28 2.351 0.518 0.287 0.41 0.363 3
V902 Sgr 5200 0.294 0.13 2.019 0.606 0.271 0.43 0.176 5
AQ Psc 6100 0.476 0.231 2.244 0.565 0.323 0.44 0.352 4
OU Ser 6100 0.297 0.172 2.113 0.562 0.248 0.44 0.263 6
V1918 Cyg 7000 0.413 0.264 2.303 0.559 0.340 0.49 0.298 7
V0637 Peg 4903 0.311 0.50 2.727 0.479 0.361 0.50 0.429 8
V839 Oph 6300 0.409 0.294 2.357 0.554 0.355 0.53 0.453 4
V0473 Cam 5300 0.298 0.47 2.659 0.487 0.357 0.54 0.459 8
ET Leo 5300 0.346 0.342 6.178 0.545 0.372 0.55 0.432 4
CSS J153314 4933 0.265 0.39 5.71 0.504 0.340 0.57 0.441 8
V592 Per 6400 0.716 0.389 2.526 0.498 0.325 0.59 0.275 6
IK Per 8800 0.676 0.171 2.094 0.597 0.313 0.60 0.19 9
NN Vir 6900 0.481 0.487 2.674 0.529 0.418 0.61 0.555 10
CSS J075258 6203 0.430 0.18 9.54 0.560 0.273 0.63 0.26 8
Y Sex 6100 0.420 0.18 0.563 0.283 0.64 11
V0416 Gem 5420 0.256 0.148 10.84 0.573 0.259 0.65 0.198 8
V1191 Cyg 6500 0.313 0.107 1.933 0.634 0.281 0.69 0.163 12
FG Hya 6300 0.328 0.104 1.924 0.614 0.22 0.69 0.179 3
ASAS J082243 6600 0.28008 0.106 0.72 13
V410 Aur 5900 0.366 0.137 2.004 0.618 0.304 0.72 0.227 4
AH Aur 6300 0.494 0.165 2.064 0.608 0.327 0.75 0.25 10
V776 Cas 6700 0.440 0.138 2.001 0.595 0.244 0.77 0.19 6
TV Mus 5900 0.446 0.15 0.568 0.278 0.77 14, 15
DZ Psc 6200 0.366 0.145 2.015 0.618 0.322 0.79 0.21 10
V728 Her 6670 0.471 0.158 2.024 0.581 0.293 0.81 0.33 16
AW UMa 7100 0.439 0.09 0.619 0.228 0.85 0.11 17, 18
NSVS 6859986 5100 0.383 0.209 8.33 0.560 0.302 0.86 0.26 8
CK Boo 6150 0.355 0.106 1.915 0.641 0.303 0.91 0.25 4
GR Vir 6300 0.347 0.106 1.913 0.645 0.317 0.93 0.20 10

References: 1- Baran et al. 2004; 2 - Deb et al. 2010; 3 - Zola et al. 2010; 4 - Gazeas et al. 2006; 5 - Samec & Corbin 2002; 6 - Zola et al. 2005; 7 - Yang et al. 2013; 8 - this paper; 9 - Zhu et al. 2005; 10 - Gazeas et al. 2005; 11 - Yang & Liu 2003; 12 - Zhu et al. 2011; 13 - Kandulapati et al. 2015; 14 - Maceroni & van’t Veer 1996; 15 - Qian et al. 2005; 16 - Erkan & Ulas 2016; 17 - Yang 2008; 18 - Rucinski 2015.

The diagrams of the relationships between the fill-out factor and the -configuration parameters (Figure 3) show rather scattered distributions that cannot be fitted to any function. However, we were able to identify some qualitative tendencies.

  1. The fill-out factor f seems not to depend on stellar temperature.

  2. A tendency of f to increase with decreasing periods P corresponds to theoretical predictions. But there are deviations from this tendency; for instance, EK Com has a period of 0.27 days and f =0.33.

  3. The fill-out factor increases as the mass ratio decreases, in agreement with theoretical predictions. But there are deviations from this tendency; for instance, FP Boo has q ≈ 0.1 and a moderate fill-out factor of 0.38 (Figure 3).

  4. We found a tendency for f to increase as the primary radius r 1 increases.

  5. The fill-out factor tends to increase as the secondary radius r 2 decreases, and also as the luminosity ratio l 2 /l 1 decreases (Figure 3).

Fig. 3 Empirical relationships between the fill-out factor and stellar parameters (the red triangles indicate our targets; the blue circles indicate for other overcontact systems from Table 7). The color figure can be viewed online. 

These tendencies are in agreement with the expected physically relationships, but there are deviations from them, especially for moderate values of f (Figure 3).

This analysis leads to the question of which of the targets shown Figure 3 will become progenitors of tight binaries and which will merge. Or is there another evolutionary outcome?

5. CONCLUSION

Our observations and light curve solutions showed that V0637 Peg, V0473 Cam, CSS J153314, CSS J075258, V0416 Gem and NSVS 6859986 have deeply overcontact configurations with fill-out factors above 0.5. The components of all the observation targets have almost equal temperatures and undergo total eclipses.

We studied the dependencies between the fill-out factor and stellar parameters (temperature, period, relative stellar radii, mass ratio, luminosity ratio) in a sample of three dozens deep-contact binaries. Most of them are consistent with theoretical predictions of the evolutionary scenarios but there are deviations from the common tendencies.

This study adds estimated parameters for six new deep-contact systems to the family of W UMa binaries. The statistical analysis of the dependencies between the fill-out factor and the stellar parameters of deep-contact systems opens new questions about the evolutionary fate of such configurations.

This work was supported partly by project HD08/20 of the Foundation for Scientific Research of the Bulgarian Ministry of Education and Science as well as by project RD 08-102 of Shumen University. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research also makes use of the SIMBAD database, operated at CDS, Strasbourg, France, the NASA Astrophysics Data System Abstract Service, the USNOFS Image and Catalogue Archive operated by the United States Naval Observatory, the Flagstaff Station (http://www.nofs.navy.mil/data/fchpix/) and the photometric software VPHOT operated by the AAVSO, Cambridge, Massachusetts (https://www.aavso.org/vphot). The authors are very grateful to the anonymous referee for the valuable suggestions and notes.

REFERENCES

Baran, A., et al. 2004, AcA, 54, 195 [ Links ]

Berry, R. & Burnell, J. 2006, The Handbook of Astronomical Image Processing with AIP4WIN2 software, Willmannn-Bell. Inc., WEB [ Links ]

Binnendijk, L. 1965, VeBam, 27, 36 [ Links ]

Deb, S., et al. 2010, NewA, 15, 662 [ Links ]

Eker, Z., Bilir, S., Yaz, E., Demircan, O., & Helvaci, M. 2008, AN, 999, 157 [ Links ]

Erkan, N. & Ulas, B. 2016, NewA , 46, 73 [ Links ]

Gazeas, K., et al. 2005, AcA, 55, 123 [ Links ]

Gazeas, K., et al. 2006, AcA, 56, 127 [ Links ]

Gettel, S. J., Geske, M. T., & McKay, T. A. 2006, AJ, 131, 621 [ Links ]

Gilliland, R. & Brown, T. 1988, PASP, 100, 754 [ Links ]

Hambleton, K., et al. 2013, MNRAS, 434, 925 [ Links ]

Henden, A. 2016, JAVSO, 44, 84 [ Links ]

Honeycutt, R. K. 1992, PASP , 104, 435 [ Links ]

Ivanov, V. P. & Kjurkchieva, D. P. 2010, BASI, 38, 83 [ Links ]

Ivanova, N., et al. 2013, A&ARv, 21, 59 [ Links ]

Kandulapati, S., Devarapalli, S. P., & Pasagada, V. R. 2015, MNRAS , 446, 510 [ Links ]

Kipping, M., 2010, MNRAS , 408, 1758 [ Links ]

Kjurkchieva, D., Popov, V., Vasileva, D., & Petrov, N. 2017, RMxAA, 53, 133 [ Links ]

Klagyivik, P. & Csizmadia, Sz. 2004, PADEU, 14, 303 [ Links ]

Lehmann, H., et al. 2013, A&A, 557A, 79 [ Links ]

Lucy, L. B. 1968a, ApJ, 151, 1123 [ Links ]

______. 1968b, ApJ, 153, 877 [ Links ]

Maceroni, C., & van’t Veer, F. 1996, A&A , 311, 523 [ Links ]

Maceroni, C. , et al. 2014, A&A , 563A, 59 [ Links ]

Martin, E. L., Spruit, H. C., & Tata, R. 2011, A&A , 535, A50 [ Links ]

Munari, U., Henden, A., Kiyota, S., et al. 2002, A&A , 389, L51 [ Links ]

Prsa, A. & Zwitter, T. 2005, ApJS, 628, 426 [ Links ]

Prsa, A. , et al. 2016, ApJS, 227, 29 [ Links ]

Qian, S.-B. 2003, MNRAS , 342, 1260 [ Links ]

Qian, S. & Yang, Y. 2005, MNRAS , 356, 765 [ Links ]

Qian, S. -B. , Yang, Y. -G., Soonthornthum, B., et al. 2005, AJ, 130, 224 [ Links ]

Qian, S.-B. , Liu, L., Zhu, L.-Y., et al. 2011, AJ, 141, 151 [ Links ]

Rasio, F. & Shapiro, S. 1995, ApJ , 438, 887 [ Links ]

Rucinski, S. M. 2015, AJ, 149, 49 [ Links ]

Samec, R. & Corbin, S. 2002, IBVS, 5259, 1 [ Links ]

Stepien, K. 2006, AcA , 56, 199 [ Links ]

Terrell, D. & Wilson, R. 2005, ApSpSci, 296, 221 [ Links ]

Tokunaga, A. T. 2000, Allen’s astrophysical quantities, Edited by Arthur N. Cox, New York: AIP Press; Springer [ Links ]

Tylenda, R., et al. 2011, A&A , 528A, 114 [ Links ]

Van Hamme, W. 1993, AJ, 106, 2096 [ Links ]

Webbink, R. F. 1984, ApJ , 277, 355 [ Links ]

Willems, B. & Kolb, U. 2004, A&A , 419, 1057 [ Links ]

Wilson, R. 1979, ApJ , 234, 1054 [ Links ]

______. 1993, ASPC, 38, 91 [ Links ]

Wilson, R. & Devinney, E. 1971, ApJ , 166, 605 [ Links ]

Yang, Y. 2008, Ap&SS, 314, 151 [ Links ]

Yang, Y. -G., Qian, S. -B., Zhang, L.-Y., Dai, H.-F., & Soonthornthum, B. 2013, AJ, 146, 35 [ Links ]

Yang, Y. -L. & Liu, Q.-Y. 2003, NewA , 8, 465 [ Links ]

Zacharias, N., et al. 2013, AJ, 145, 44 [ Links ]

Zola, S., et al. 2005, Acta Astron., 55, 389 [ Links ]

Zola, S. , et al. 2010, MNRAS , 408, 464 [ Links ]

Zhu, L., Qian, S. -B., Soonthornthum, B. , & Yang, Y. -G. 2005, AJ, 129, 2806 [ Links ]

Zhu, L. Y., Qian, S. B., Soonthornthum, B. , He, J. J., & Liu, L. 2011, AJ, 142, 124 [ Links ]

Zhu, L. , Zhao, E., & Zhou, X. 2016, RAA, 16, 68 [ Links ]

APPENDIX

A. TABLES WITH PHOTOMETRIC DATA

Table 8 Photometric data of V0637 PEG 

HJD mag Error Filter
2457654.23887871 13.843 0.006 g
2457654.24208867 13.801 0.005 g
2457654.24542862 13.750 0.005 g
... ... ... ...
2457654.24047869 12.769 0.007 i
2457654.24380864 12.732 0.007 i
2457654.24714859 12.683 0.007 i
... ... ... ...

Table 9 Photometric data of V0473 CAM 

HJD mag Error Filter
2457024.227290 11.971 0.003 g
2457024.229490 11.987 0.003 g
2457024.231690 12.008 0.003 g
... ... ... ...
2457024.228380 11.199 0.003 i
2457024.230590 11.216 0.003 i
2457024.232790 11.240 0.003 i
... ... ... ...

Table 10 Photometric data of CSS J153314 

HJD mag Error Filter
2457560.317616 13.245 0.007 g
2457560.320796 13.213 0.007 g
2457560.323946 13.165 0.007 g
... ... ... ...
2457560.319226 12.318 0.009 i
2457560.322376 12.285 0.009 i
2457560.325526 12.250 0.009 i
... ... ... ...

Table 11 Photometric data of CSS J075258 

HJD mag Error Filter
2457428.219764 13.653 0.003 g
2457428.225044 13.646 0.003 g
2457428.230404 13.616 0.003 g
... ... ... ...
2457428.217135 13.186 0.006 i
2457428.222394 13.177 0.006 i
2457428.227684 13.168 0.006 i
... ... ... ...

Table 12 Photometric data of V0416 GEM 

HJD mag Error Filter
2457726.36569356 13.124 0.005 g
2457726.36781367 13.111 0.005 g
2457726.36996379 13.108 0.005 g
... ... ... ...
2457726.36674362 12.366 0.006 i
2457726.36887373 12.348 0.006 i
2457726.37102385 12.356 0.008 i
... ... ... ...

Table 13 Photometric data of NSVS 6859986 

HJD mag Error Filter
2457717.38869749 13.006 0.004 g
2457717.39084756 12.991 0.004 g
2457717.39301762 12.969 0.004 g
... ... ... ...
2457717.38976753 12.019 0.006 i
2457717.39193759 12.014 0.006 i
2457717.39408765 11.978 0.005 i
... ... ... ...

Received: March 09, 2017; Accepted: June 28, 2017

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License