SciELO - Scientific Electronic Library Online

 
vol.29 número1Radiocirugía psiquiátrica con Gamma KnifeEstudio de la relación entre consumo de drogas y migración a la frontera norte de México y Estados Unidos índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Salud mental

versión impresa ISSN 0185-3325

Salud Ment vol.29 no.1 México ene./feb. 2006

 

Artículos originales

La neurocirugía en los trastornos de la alimentación: ¿una alternativa posible?

Guillermo Fanghänel1 

Leticia Sánchez-Reyes2 

Adrián Madrigal3 

Francisco Velasco Campos4 

1Unidad de Factores de Riesgo Cardiovascular, Servicio de Cardiología del Hospital General de México. Investigador Nacional del Sistema Nacional de Investigadores. Profesor Titular de pre y post-grado de la Facultad de Medicina de la UNAM.

2Unidad de Factores de Riesgo Cardiovascular, Servicio de Cardiología del Hospital General de México, México. Investigador Nacional del Sistema Nacional de Investigadores.

3Servicio de Neurocirugía Funcional, Hospital General de México, México.

4Jefe de Servicio de Neurología y Neurocirugía, Hospital General de México. Investigador Nacional del Sistema Nacional de Investigadores. Profesor de Post-grado de la Facultad de Medicina de la UNAM.


Resumen:

El conocimiento, por un lado, de la regulación neuroendocrina del ciclo apetito-saciedad, y por otro, de las nuevas técnicas de neuromodulación por medio de la cirugía estereotáxica, permite ofrecer un campo de investigación extraordinariamente interesante en ciertos pacientes con trastornos de la alimentación, de difícil control y con riesgo de incremento de mortalidad. Tal es el caso de la obesidad patológica que por sus condiciones generales no resiste una anestesia general, de la anorexia nervosa y de la bulimia. En estos casos, la terapéutica habitual generalmente falla.

La estereotaxia (latín: stereo, tridimensional; taxis, posiciona-miento) es una técnica moderna de la neurocirugía que permite la localización y el acceso preciso a estructuras intracerebrales a través de un pequeño orificio practicado en el cráneo. Si tenemos identificados los sitios que regulan la ingesta de alimentos o la saciedad, es factible que por medio de esta técnica podamos estimular o inhibir esta función y ofrecerle al paciente una alternativa que en teoría se antoja factible. Algunas de sus posibles ventajas serían que se trata de una cirugía mínimamente invasiva, que ésta se realiza en general con anestesia local, que los pacientes requieren un período mínimo de hospitalización y que disminuyen los riesgos quirúrgicos. Esto nos permitiría predecir en la mayoría de los pacientes una evolución satisfactoria.

La experiencia actual de la estereotaxia en los trastornos de la alimentación es nula; todo gira en el terreno hipotético. Sin embargo, la utilización del procedimiento para otras indicaciones aceptadas, en las que se tiene experiencia, nos ha permitido obtener datos interesantes sobre la evolución de estos pacientes, respecto a que, indirectamente, el procedimiento ha influido en su peso corporal. Presentamos estos resultados indirectos, que nos motivan a seguir valorando esta posibilidad en los pacientes que cumplan con un perfil aprobado por un comité de ética debidamente autorizado.

Palabras clave: Psicocirugía; estereotaxia; trastornos de la alimentación

Abstract:

Composition and quantity of food in-taken varies considerably between one meal and another, or between one day and the following. Non biological factors -such as emotional, social, day time, feasibility in the type of food, and cost- are, among others, factors that in some way affect the degree of energy in-take by food, which generally is not related with daily energy expenditure. These phenomena represent an active process of regulation that is characterized by the balance between signs that stimulate hunger, called orexigenics and those that produce satiation to stop in-take, called anorexigenics, that promotes the stability in the quantity of corporal energy manifested as fat. In this feeding regulatory process there are many molecular signs that participate and regulate the in-take of behaviour food for homeostasis.

There are two hypothalamic centers related with the food in-take control: the hunger centre in the lateral hypothalamus and the satiation centre in the ventromedial nucleus. In this control many impulses participate, regulated by substances called neurotransmitters, such as: neuropeptide Y, galanine, orexines for the hunger centre and nor epinephrine, serotonin, and dopamine for the satiation centre.

Insulin reaches the brain through circulation and acts reducing the contribution of energy, it was the first hormonal sign that was implicated in weight control by CNS. The second identified hormone, secreted by the adiposity, was leptin. Both hormones circulate in levels proportional to the corporal fat and get to the CNS in proportion to its plasmatic concentrations.

Receptors as leptin and insulin are expressed by brain neurons involved in the contribution of energy, and the administration of any of both peptides directly to the brain, reduce the in-take of food. The lack of any of these hormones produces the opposite. Leptin has a more important role than insulin in the control of the energetic homeostasis in the CNS. For example, the lack of leptin causes severe obesity with hyperfagia that persists regardless the levels of elevated insulin. In contrast, obesity isn't induced by the lack of insulin. Insulin has a critic role to promote the storage of fat and the synthesis of leptin through the fat cellule.

The neuropeptide Y, produced in the arcuate nucleus of the hypothalamus has an anabolic effect. The gene of expression and secretion of this peptide in the hypothalamus increases during depletion, in the storage of corporal fat and/or when the signs of leptin/insulin are decreased in the brain. Leptin inhibits the gene of expression of the neuropeptide Y in the arcuate nucleus and the genetic "knockout" of the NPY reduces hyperfagia and obesity in mice ob/ob, indicating that the total response to the lack of leptin requires the signs of the NPY. Other substances like the Agouti protein (AGRP), the orexines (hypocretines A and B) and the concentrations of the melancortin hormone have been added to the molecule candidate list with anabolic effects. Also in the adjoining neurons of the arcuate nucleus, are originated anorexigenic peptides like alfa-MSH (a derivated of the pro-opiomelancortin, POMC) and CART (transcript protein related with cocaine and amphetamine).

Both types of neurons (NPY/AGRP and POMC/CART) coexpress the leptin receptors. In those situations in which the levels of leptin or insulin are low, the NPY/AGRP neurons activate and the POMC/CART are inhibited. This suggests that the main site of adiposity signs transformation is a neuronal response in the arched nucleus. The link between the lateral hypothalamus and the elevated centers of the brain that regulate hunger and satiation is a very important aspect of the regulation system. There have been typified two types of neuropeptides linked to neurons, that appear to be exclusively of the lateral hypothalamus area: the concentrated melanin hormone (MCH) and the orexines.

At the lateral zone, there have been specified two types of hypothalamic neuropeptides, the orexines A and B, also known as hypocretines 1 and 2, which are cellular bodies of the hypothalamus, especially at the lateral hypothalamus and the perifornical area, which stimulate the appetite in an independent way to other neuropeptides known. On the other hand, the orexines A and B derive (by proteolysis) of a common precursor, and are capable of activating their two respective receptors that work in conjunction with proteins G. The central administration of orexines stimulates the in-take and production of orexines' increase with fasting. These neuropeptides match with the hypocretines described by other authors, with expression in late ral hypothalamus, arched nucleus, septal nucleus and forebrain.

Monoaminergic neurotransmitters.

  1. Noradrenalin Noradrenalin is synthesized in different areas of the brain such as the dorsal nucleus of the vague and the locus coeruleus.Noradrenalin shares the same place with NPY and the injection of both inside the preventricular nucleus increase the in-take of food. The repeated injection can result in weight increase; leptin can inhibit noradrenalin secretion.

  2. Dopamine Critic dependence of the in-take of food in the CNS is given by the dopamine sign, which is implicated in the voluntary lack of the food in-take. Motor alterations associated with the lack of dopamine affect also the alimentary behavior. The dopamine effect over the alimentary behavior varies depending of the studyied area. For example the routes of dopamine in the mesolimbic area contribute to the reward of the in-take of savory food.

  3. SerotoninThe 5HT2c receptor of serotonin is implicated in the decrease of the in-take of food and the weight increase, due to its effect in the impulse of the satiation centre. To maintain the homeostasis of normal energy it is necessary that the serotonin sign be intact.

New alternative hypothesis.

On one hand, the knowledge of regulation of the appetite-satiety neuroendocrine cycle, and on the other, the new techniques of neuromodulation through stereotaxic surgery, allow to offer an extraordinarily interesting field of research in certain patients with feeding disorders of difficult control and with an increase in the mortality risk. The alternative of controlling specific centers of hunger/satiation regulation, is still a hypothesis, though there are some data that allow us to assume that it could be feasible and we will mention them after.

Current experience.

Stereotaxic (Latin: stereo, three-dimensional; taxis, positioning) is a modern technique of neurosurgery that allows the localization and precise access to intra-cerebral structures, through a small orifice in the skull. If we have identified the places that regulate the intake of food or satiety, it is feasible that through this technique we can stimulate or inhibit this function and offer the patient an alternative that in theory could be feasible. Some of its possible advantages will be that we are talking about a minimum invasive surgery, generally performed using local anesthesia; patients need a minimum hospitalization stay and surgical risks are minimized. This allows us to predict in the majority of the patients a satisfactory evolution of weight decrease.

The current experience of stereotaxic used in eating disorders is null; everything about it is hypothetic. However, the use of this proceeding for other accepted indications where there is previous experience, has allowed us to obtain interesting data of the evolution of these patients that shows indirectly, that the procedure has influenced in the corporal weight.

We present these indirect results, which motivate us to continue considering its possible use in patients that show the approved profile according to an ethic committee properly authorized.

In depression or bipolar disorder cases, the use of the stereotaxic surgery applying electrodes in the bottom pedunculo thalamic region (ITP), independently that they show an improve in their basal alteration, the patients show a weight increase, inferring a relationship of this area and the one of the hypothalamus for the appetite/satiation control, situation that hypothetically could benefit patients with anorexia nervosa or bulimia.

In the cases with Parkinson Disease, the stereotaxic procedure has been made in the pre-lemniscal (RAPRL) or the subtalamic region (STN) in a unilateral or bilateral way, and although the response hasn't been uniform, the weight changes showed a decrease, making this a possible alternative to be used in some patients with morbid obesity according to the inclusion criteria.

Final comments.

The expectative of stereotaxic surgery in handling patients with difficult to control feeding disorders or with high risk of morbid-mortality, is shown as an hypothesis, that should consider the specific rules of good clinical practices and adjust to the rules of an approved ethics committee, for these procedures.

Key words: Psychosurgery; stereotaxic; feeding disorders

Texto completo disponible sólo en PDF

Referencias

1. Ahima RS, Kelly J, Elmquist JK, Flier JS: Distinct physiologic and neuronal responses to decreased leptin and mild hyperleptinemia. Endocrinology, 140:4923-4931, 1999. [ Links ]

2. Arosio M, Ronchi CL, Gebbia C, Cappiello V y cols.: Stimulatory effects of ghrelin on circulating somatostatin and pancreatic polypeptide levels. J Clin Endocrinol Metabol, 88:701-704, 2003. [ Links ]

3. Bell ME, Bhatnagar S, Akana SF, Choi S, Dallman MF: Disruption of arcuate/paraventricular nucleus connections changes body energy balance and response to acute stress. J Neurosci, 20:6707-6713, 2000. [ Links ]

4. Benoit SC, Air EL, Coolen LM, Strauss R y cols.: The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci, 22:9048-9052, 2002. [ Links ]

5. Broberger C, Johansen J, Johansson C, Schalling M, Hokfelt T: The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA, 95:15043-15048, 1998. [ Links ]

6. Cerda-Reverter JM, Peter RE: Endogenous Melanocortin Antagonist in fish: structure, brain mapping, and regulation by fasting of the goldfish agouti-related protein gene. Endocrinology, 144(10):4552-4561, 2003. [ Links ]

7. Cerda-Reverter JM, RIngholm A, Schioth HB, Peter RE: Molecular cloning, pharmacological characterization, and brain mapping of the melanocortin 4 receptor in the goldfish: Involvement in the control of food intake. Endocrinology, 144(6):2336-2349, 2003. [ Links ]

8. Clegg DJ, Benoit SC, Air EL, Jackman AT y cols.: Increased dietary fat attenuates the anorexic effects of intracerebroventricular injections of MTII. Endocrinology, 144(7):2941-2946, 2003. [ Links ]

9. Clement FP, Karine FP: Genetics and the PATHOPHYSIOLOGY OF OBESity. Pediatric Research, 53(5):721-725, 2003. [ Links ]

10. Dennery PA: A cure for obesity on the horizon? Pediatric Research, 53(4):538, 2003. [ Links ]

11. Elmquist JK, Elias CF, Saper CB: From lesions to leptin: hypothalamic control of food intake and body weight (Review). Neuron, 22:221-232, 1999. [ Links ]

12. Fanghánel G, Sanchez-Reyes L: Endocrinología para el médico general. Obesidad, Dorantes CA (ed.). Interamericana, 2002. [ Links ]

13. Fraley GS, Ritter S: Immunolesion of norepinephrine and epinephrine afferents to medial hypothalamus alters basal and 2-deoxy-d-glucose-induced neuropeptide Y and agouti gene-related protein messenger ribonucleic acid expression in the arcuate nucleus. Endocrinology, 144(1):75-83, 2003. [ Links ]

14. Gildenberg P, Tasker R: Textbook of Stereotactic and Functional Neurosurgery. McGraw-Hill, EUA, 1998. [ Links ]

15. Hoebel-Bartley G, Rada P, Mark G, Parada M, Puig De Parada M: Hypothalamic control of the mesolimbic reward system: PVN galanin and LH, dopamine. Progress in Obesity Research. Angel A y col .(ed.). pp. 393-397, J Libbey & Co, 1994. [ Links ]

16. Hucking K, Hamilton-Wessler M, Ellmerer M, Bergman RN: Burst-like control of lipolysis by the sympathetic nervous system in vivo. J Clin Invest, 111(2):257-264, 2003. [ Links ]

17. Korner J, Leibel RL: To eat or not to eat - how the guttalks to the brain. N Engl J Med, 349(10):926-928, 2003. [ Links ]

18. Landt M, Ludbrook PA, Billadello JJ: Role of protein binding in renal elimination of leptin. Clinical Endocrinology, 59(1):44-48, 2003. [ Links ]

19. Mizuno TM, Makimura H, Silverstein J, Roberts JL y cols.: Fasting regulates hypothalamic neuropeptide Y, agouti-related peptide, and proopiomelanocortin in diabetic mice independent of changes in leptin or insulin. Endocrinology, 140:4551-4557, 1999. [ Links ]

20. Rahmouni KH, Morgan WG, Mark DA, Allyn L: Intracellular mechanisms involved in leptin regulation of sympathetic outflow. Hypertension, 41(3, Part 2) (Supl):763-767, 2003. [ Links ]

21. Schwartz MW, Woods SC, Porte DJ, Seeley RJ, Baskin DG: Central nervous system control of food intake. Nature, 404:661-671, 2000. [ Links ]

22. Shaltenbrand G, Warren W: Atlas for Stereotaxy of the Human Brain. Stuttgart, Thieme, 1977. [ Links ]

23. Tang-Christensen M, Holst JJ, Hartmann B, Vrang N: The arcuate nucleus is pivotal in mediating the anorectic effects of centrally administered leptin. Neuroreport, 10:1183-1187, 1999. [ Links ]

24. Wade G: Lessons from experimental disruption of estrous cycles and behaviors. Medicine Science Sports Exercise, 35(9):1573-1580, 2003. [ Links ]

25. Wellman PJ: Modulation of eating by central catecholamine systems. Curr Drug Targets, 6:191-9, 2005. [ Links ]

26. Zigman JM, Elmquist JK: Minireview: From anorexia to obesity-The Yin and Yang of body weight control. Endocrinology, 144(9):3749-3756, 2003. [ Links ]

Correspondencia: Dr. Guillermo Fanghanel Salmón. Bruselas 135 casa 1, Coyoacán, 04100, México D.F. gfangh@yahoo.com

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons