SciELO - Scientific Electronic Library Online

 
vol.33 número3Bioacumulación de cianotoxinas en ecosistemas dulceacuícolas en América Latina: una revisión índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Hidrobiológica

versión impresa ISSN 0188-8897

Hidrobiológica vol.33 no.3 Ciudad de México sep./dic. 2023  Epub 06-Mayo-2024

https://doi.org/10.24275/rymz3501 

Notas científicas

Recruitment of Pocillopora coral on experimental tiles in the Mexican Pacific

Reclutamiento del coral Pocillopora en placas experimentales en el Pacífico mexicano

J. Fernando Alvarado-Rodríguez*  1  2 
http://orcid.org/0000-0003-1274-9943

Luis. E. Calderon-Aguilera1 
http://orcid.org/0000-0001-5427-6043

Rafael A. Cabral-Tena1 
http://orcid.org/0000-0002-2836-2834

1Laboratorio de Esclerocronología y Ecología de la Zona Costera, Departamento de Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California. Carretera Ensenada - Tijuana No. 3918, Zona Playitas, Ensenada, B. C., 22860, México.

2Laboratorio de Biodiversidad Marina, Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo. Avenida San Juanito Itzícuaro s/n, Col. Nueva Esperanza, Morelia, Michoacán, 58337. México.


ABSTRACT

Background.

The recruitment of branching corals in the eastern Pacific is poorly understood despite being of paramount importance to the dynamics of coral populations. Experimental studies provide a non-destructive means to evaluate recruitment and compare settlement materials.

Goals.

To study Pocillopora recruitment on PVC and terracotta tiles in Bahía Ixtapa-Zihuatanejo (Mexican Pacific).

Methods.

We deployed 40 square (10 x 10 x 0.5 cm) experimental (20 PVC and 20 unglazed terracotta) tiles arranged as Calcification/Accretion Units at the Islote Zacatoso reef.

Results.

We observed two coral recruits at the edges of terracotta tiles, presumably due to light availability, and no recruits on horizontal sides, which may have been due to siltation stress, predation, or biofouling. No recruits were found on PVC tiles.

Conclusions.

Our findings indicate that the coral recruitment is low in the study area and that the terracotta tiles may be a better experimental substrate than PVC tiles to assess pocilloporid coral recruitment in the Mexican Pacific; however, further studies are needed to clarify this assumption.

Keywords: Coral recruitment; experimental substrate; terracotta tiles; Mexican Pacific

RESUMEN

Antecedentes.

El reclutamiento de corales ramificados en el Pacífico oriental tropical está poco documentado, a pesar de la importancia que tiene para entender su dinámica poblacional. Los estudios experimentales proporcionan un medio no destructivo para evaluar el reclutamiento y comparar diferentes materiales.

Objetivo.

Estudiar el reclutamiento de Pocillopora en placas de PVC y de terracota en Bahía Ixtapa-Zihuatanejo, en el Pacífico mexicano.

Métodos.

Colocamos 40 placas cuadradas (10 x 10 x 0.5 cm), 20 de PVC y 20 de terracota armadas como Unidades de Calcificación/Acreción en el arrecife Islote Zacatoso.

Resultados.

Observamos dos reclutas de coral en la orilla de las placas de terracota pero ninguno en los lados horizontales, posiblemente debido a la disponibilidad de luz, el estrés por sedimentación, la depredación, o el sobrecrecimiento por biota incrustante. No encontramos reclutas en ninguna de las placas de PVC.

Conclusiones.

Nuestros hallazgos indican que el reclutamiento coralino es bajo en la zona de estudio y que las placas de terracota pueden ser un mejor sustrato experimental que las de PVC para evaluar el reclutamiento de corales pociloporidos en el Pacífico mexicano; sin embargo, se necesitan más estudios para corroborar esta suposición.

Palabras clave: Reclutamiento de corales; sustrato experimental; placas de terracota; Pacífico mexicano

Larval dispersal and recruitment are crucial to the persistence of existing coral populations and the establishment of populations in new areas. In the eastern tropical Pacific, branching corals such as Pocillopora are the primary reef builders (Glynn et al., 2017), and fragmentation is the predominant mechanism of asexual reproduction and dispersal (Highsmith, 1982; Richmond, 1997). Although Pocillopora damicornis (Linnaeus, 1758) was thought to be sexually sterile in the eastern Pacific (Richmond, 1987), it can reproduce asexually and sexually (Chávez-Romo & Reyes-Bonilla, 2007; Carpizo-Ituarte et al., 2011).

Coral recruitment is indicative of sexual reproduction. In the face of anthropogenic and environmental disturbances, genetic diversity due to sexual reproduction is of paramount importance for the persistence of populations to adapt and persist over time (Glynn et al., 1991; Richmond, 1997). Despite the importance of coral recruits, they are often difficult to detect in situ because of their small size, and live scans may underestimate overall recruitment compared to artificial substrate-based census methods (Harper et al., 2021). Although artificial settlement tiles are a non-destructive means to study coral recruitment, both the material and orientation of the tiles may influence coral settlement and recruitment (Field et al., 2007).

Herein, we provide evidence of the successful recruitment of Pocillopora branching corals at the Islote Zacatoso reef (Ixtapa-Zihuatanejo, Guerrero, Mexican Pacific; 17° 39′ 14.5′′ N, 101° 37′ 18.7′′ W). We deployed 40 square experimental (10 x 10 x 0.5 cm) tiles composed of two frequently used materials: polyvinyl chloride (PVC; 20 tiles) and unglazed terracotta (20 tiles). Tiles were arranged as Calcification/Accretion Units (CAUs) parallel to the sea floor to mimic horizontal exposed and natural cryptic substrates (Price et al., 2012; Johnson et al., 2022). All CAUs were deployed near healthy coral colonies within the reef in April 2019, with approximately 1 m between each one, at a 6 m depth (~ 30 cm above the seabed; Fig. 1A). After 15 months, the CAUs were recovered, and each tile was stored in a plastic bag and frozen until further processing. In the laboratory, each tile was rinsed to remove sediments and soaked in sodium hypochlorite for 24-48 h to degrade organic matter. The tiles were then oven-dried at 70 °C for 48 h, and coral recruits on the tiles were identified with a stereoscopic microscope.

Figure 1 A) Photograph of a CAU (Calcification/Accretion Unit) after 15 months of deployment at Islote Zacatoso reef and B) Pocillopora sp. recruits overgrowing encrusting organisms; inset is a terracotta tile (lower right) showing the edge where the recruit attached (green square). 

We found two Pocillopora sp. recruits attached at the edges of terracotta tiles that were growing over encrusts such as bryozoans and barnacles (Fig. 1B). Corals did not settle on horizontally positioned tiles, which may have been due to siltation stress (Babcock & Davies, 1991; Te, 1992) or to avoid predation (Jokiel et al., 2014; Doropoulos et al., 2016). No recruits were observed on PVC tiles. These findings suggest that terracotta tiles facilitate coral recruitment (Harriott & Fisk, 1987) possibly because of their microstructure and similarity to reef substrata (López-Pérez et al., 2007). Moreover, these results support the presence of active coral reproduction in the region (Carpizo-Ituarte et al., 2011).

The recruitment of Pocillopora sp. is reportedly low in the Mexican Pacific. López-Pérez et al. (2007) observed only one Pocillopora recruit in 305 terracotta tiles, which were deployed at 45 degrees concerning the ocean floor over 12 months in Bahías de Huatulco, Oaxaca. In Bahía de La Paz, Baja California Sur, Cabral-Tena et al. (2018) recorded six Pocillopora recruits in 30 terracotta tiles deployed for ~ 3 months. Furthermore, other studies with terracotta tiles have not recorded pocilloporid recruits in the region (e.g., Medina-Rosas et al., 2005 in Jalisco and Nayarit; Santiago-Valentín et al., 2020 in the Islas Marias Biosphere Reserve).

In this study, Pocilloporid corals settled on the sides (i.e., vertical) of terracotta tiles but not in PVC tiles, even though the CCA, which is known to act as a preferential settlement substrate for reef-building coral larvae (Morse et al., 1988; Heyward & Negry, 1999; Tebben et al., 2015; Elmer et al., 2018; Jorissen et al., 2021; Tanvet et al., 2022;), grew in both materials. Competent coral larvae can explore for a suitable substrate that maximizes their fitness (Morse & Morse, 1996). Moreover, perhaps coral spats settled on terracotta tiles because their texture resembles natural substrate conditions (López-Pérez et al., 2007), and avoid predation and siltation stress on vertical sides (Babcock & Davies, 1991). PVC tiles might not be an attractive substrate for larvae of this coral branching, or if settlement occurs, we do not know which factors eliminate spats from tiles. Factors such as predation and competition for space with others encrusting organisms might be a possible response, but this question is beyond the objectives of the present work.

Although in other parts of the world PVC tiles appear to be a stable substrate for the recruitment of corals (e.g., Vargas-Ángel et al., 2015; dos Reis et al., 2016; Price et al., 2019), to our knowledge, Pocillopora sp. recruits on PVC tiles has never been observed in the Mexican Pacific (Alvarado-Rodríguez et al., 2019, 2021, 2022; Nava et al., 2022; Orrante et al., 2023; Medellín-Maldonado pers. comm. 2023 in Huatulco, Oaxaca; Pareja-Ortega pers. comm. 2023 in La Paz, Baja California Sur). We encourage terracotta tiles over PVC tiles in future studies of recruitment of branching corals in reefs of the Mexican Pacific because we have never observed coral recruitment in PVC tiles throughout several years of using this material while we found two recruits of Pocillopora coral for the first time using terracotta tiles.

It is also essential to evaluate multiple settlement tile orientations (e.g., 45 or 90 degrees concerning the ocean floor) because no scientific consensus exists that substrate orientation increases the chances of encountering coral recruits. For example, English et al. (1997) described the general procedure to study coral recruitment on terracotta tiles inclined to 45 degrees concerning seafloor, but no discussion about it is provided. In this regard, Glassom et al. (2004) argued that this orientation positively correlates with coral recruitment. However, horizontally deployed experimental substrates are common in coral recruitment studies (e.g., Doropoulos et al., 2016; Gallagher & Doropoulos, 2017; Elmer et al., 2018). More specifically, Harper et al. (2021) recommend including both sides (top and bottom) of horizontally deployed tiles and ensuring homogeneous rugosity due to coral recruits settling on both sides.

Like in this work, coral recruitment has occurred on lateral sides of the experimental substrates in other studies (e.g., Tomascik, 1991; Melo-Merino, 2009; Cameron & Harrison, 2020). These works conclude that predation and siltation effects are the main factors controlling larva settlement and argue that coral recruitment is proportionally greater on vertical or under surfaces than on upper surfaces (Babcock & Davies, 1991 and references therein). In particular, the recruitment of Pocillopora corals is so scarce that some works have adopted both material orientation strategies to increase chances for coral recruits encountering (e.g., Soong et al., 2003). In conclusion, more comparative studies in the Mexican Pacific are needed to clarify this issue.

ACKNOWLEDGMENTS

We thank Thierry Durand and Capitan “Chilolo” for logistical support during fieldwork. This research was supported by the National Council of Science and Technology (CONACYT; CF-2019-39210 to LECA). JFAR acknowledges receiving a PhD scholarship from CONACYT (No. 561548). The comments of three anonymous reviewers and the editor improved previous versions. This paper was professionally edited by MacTavish Scientific Editing (MSE).

REFERENCES

Alvarado-Rodríguez, J. F., H. Nava & J. L. Carballo. 2019. Spatio-temporal variation in rate of carbonate deposition by encrusting organisms in different reef microhabitats from Eastern Pacific coral reefs. Journal of the Marine Biological Association of the United Kingdom 99(7): 1495-1505. DOI: 10.1017/S0025315419000638 [ Links ]

Alvarado-Rodríguez, J. F., L. E. Calderon-Aguilera, R. A. Cabral-Tena, C. O. Norzagaray-López, H. Nava, L. Peiffer & R. G. Fernández-Aldecoa. 2022. High sclerobiont calcification in marginal reefs of the eastern tropical Pacific. Journal of Experimental Marine Biology and Ecology 557: 151800. DOI: 10.1016/j.jembe.557 (2022):151800 [ Links ]

Alvarado-Rodríguez, J. F., R. A. Cabral-Tena, C. O. Norzagaray-López & L. E. Calderon-Aguilera. 2021. The despised role of sclerobionts of a coral community from the eastern tropical Pacific. Reef Encounter 36: 47-49. DOI: https://doi.org/10.53642/ZDYP7642 [ Links ]

Babcock, R. & P. Davies. 1991. Effects of sedimentation on settlement of Acropora millepora. Coral Reefs 9: 205-208. DOI: 10.1007/BF00290423 [ Links ]

Cabral-Tena, R. A., D. A. Paz-García, H. Reyes-Bonilla, S. S. González-Peláez & E. F. Balart. 2018. Spatiotemporal variability in coral (Anthozoa: Scleractinia) larval recruitment in the Southern Gulf of California. Pacific Science 72(4): 435-447. DOI: 10.2984/72.4.4 [ Links ]

Cameron, K. A. & P. L. Harrison. 2020. Density of coral larvae can influence settlement, post-settlement colony abundance and coral cover in larval restoration. Scientific Reports 10(1): 5488. DOI: 10.1038/s41598-020-62366-4 [ Links ]

Carpizo-Ituarte, E., V. de Vizcaíno-Ochoa, G. de Chi-Barragán, O. Tapia-Vázquez, A. Cupul-Magaña & P. Medina-Rosas. 2011. Evidence of sexual reproduction in the hermatypic corals Pocillopora damicornis, Porites panamensis, and Pavona gigantea in Banderas Bay, Mexican Pacific. Ciencias Marinas 37(1): 97-112. DOI: 10.7773/cm.v37i1.1773 [ Links ]

Chávez-Romo, H. E. & H. Reyes-Bonilla. 2007. Sexual reproduction of the coral Pocillopora damicornis in the southern Gulf of California, Mexico. Ciencias Marinas 33(4): 495-501. DOI: 10.7773/cm.v33i4.1141 [ Links ]

Doropoulos, C., G. Roff, Y. Bozec, M. Zupan, J. Werminghausen & P. J. Mumby. 2016. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecological Monographs 86: 20-44. DOI: 10.1890/15-0668.1 [ Links ]

dos Reis, V. M., C. S. Karez, R. Mariath, F. C. de Moraes, R. T. de Carvalho, P. S. Brasileiro, R. da G. Bahia, T. M. da C. Lotufo, L. V. Ramalho, R. L. de Moura, R. B. Francini-Filho, G. H. Pereira-Filho, F. L. Thompson, A. C. Bastos, L. T. Salgado & G. M. Amado-Filho. 2016. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil. PloS One 11(4): e0154417. DOI: 10.1371/journal.pone.0154417 [ Links ]

Elmer, F., J. J. Bell, & J. P. A. Gardner. 2018. Coral larvae change their settlement preference for crustose coralline algae dependent on availability of bare space. Coral Reefs 37(2): 397-407. DOI: 10.1007/s00338-018-1665-2 [ Links ]

Field, S. N., D. Glassom & J. Bythell. 2007. Effects of artificial settlement plate materials and methods of deployment on the sessile epibenthic community development in a tropical environment. Coral Reefs 26(2): 279-289. DOI: 10.1007/s00338-006-0191-9 [ Links ]

English, S., C. Wilkinson, & V. Baker. 1997 (eds). Survey manual for tropical marine resources. 2nd ed. Australian Institute of Marine Science. Townsville, Australia. [ Links ]

Gallagher, C. & C. Doropoulos. 2017. Spatial refugia mediate juvenile coral survival during coral-predator interactions. Coral Reefs 36(1): 51-61. DOI: 10.1007/s00338-016-1518-9 [ Links ]

Glassom, D., D. Zakai, & N. E. Chadwick-Furman. 2004. Coral recruitment: a spatio-temporal analysis along the coastline of Eilat, northern Red Sea. Marine Biology 144(4): 641-651. DOI: 10.1007/s00227-003-1243-0 [ Links ]

Glynn, P. W., N. J. Gassman, C. M. Eakin, J. Cortes, D. B. Smith & H. M. Guzman. 1991. Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador) - I. Pocilloporidae. Marine Biology 109: 355-368. DOI: 10.1007/BF01313501 [ Links ]

Glynn, P. W., D. P. Manzello & I. C. Enochs(eds). 2017. Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment. Springer Nature. DOI: 10.1007/978-94-017-7499-4 [ Links ]

Harper, L. M., L. K. Huebner, E. D. O’Cain, R. Ruzicka, D. F. Gleason & N. D. Fogarty. 2021. Methodological recommendations for assessing scleractinian and octocoral recruitment to settlement tiles. PeerJ 9: e12549. DOI: 10.7717/peerj.12549 [ Links ]

Harriott, V. & D. Fisk. 1987. A comparison of settlement plate types for experiments on the recruitment of scleractinian corals. Marine Ecology Progress Series 37: 201-208. DOI: 10.3354/meps037201 [ Links ]

Heyward, A. J. & A. P. Negri. 1999. Natural inducers for coral larval metamorphosis. Coral Reefs 18(3): 273-279. DOI: 10.1007/s003380050193 [ Links ]

Highsmith, R. C. 1982. Reproduction by Fragmentation in Corals. Marine Ecology Progress Series 7: 207-226. [ Links ]

Johnson, M. D., N. N. Price, & J. E. Smith. 2022. Calcification Accretion Units (CAUs): A standardized approach for quantifying recruitment and calcium carbonate accretion in marine habitats. Methods in Ecology and Evolution 2022 (00): 1-11. DOI: 10.1111/2041-210x.13867 [ Links ]

Jokiel, P. L., K. S. Rodgers, C. D. Storlazzi, M. E. Field, C. V. Lager, D. Lager. 2014. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Molokaʻi, Hawaiʻi. PeerJ 2: e699. DOI: 10.7717/peerj.699 [ Links ]

Jorissen, H., P. E. Galand, I. Bonnard, S. Meiling, D. Raviglione, A.-L. Meistertzheim, L. Hédouin, B. Banaigs, C. E. Payri & M. M. Nugues. 2021. Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Scientific Reports 11: 14610. DOI: 10.1038/s41598-021-94096-6 [ Links ]

López-Pérez, R. A., M. G. Mora-Pérez, & G. E. Leyte-Morales. 2007. Coral (Anthozoa: Scleractinia) recruitment at Bahías de Huatulco, Western México: Implications for coral community structure and dynamics. Pacific Science 61(3): 355-369. DOI: 10.2984/1534-6188(2007)61[355:CASRAB]2.0.CO;2 [ Links ]

Medina-Rosas, P., J. D. Carriquiry, & A. L. Cupul-Magaña. 2005. Recruitment of Porites (Scleractinia) on artificial substrate in reefs affected by the 1997-98 El Nino in Banderas Bay, Mexican Pacific. Ciencias Marinas 31(1A): 103-109. [ Links ]

Melo-Merino, S. M. 2009. Diversidad y abundancia de corales hermatípicos reclutados in situ y en sustrato artificial en el parque nacional sistema arrecifal veracruzano. Tesis de Licenciatura en Biología, Instituto Tecnológico de Boca del Río, Boca del Río, Veracruz, México. 67 pp. [ Links ]

Morse, D. E., N. Hooker, A. N. C. Morse & R. A. Jensen. 1988. Control of larval metamorphosis and recruitment in sympatric agariciid corals. Journal of Experimental Marine Biology and Ecology 116(3): 193-217. DOI: 10.1016/0022-0981(88)90027-5 [ Links ]

Morse, D. E. & A. N. C. Morse. 1996. Flypapers for Coral and Other Planktonic Larvae. BioScience 46(4): 254-262. DOI: 10.2307/1312832 [ Links ]

Nava, H., J. F. Alvarado-Rodríguez, M. Á. Cárdenas-Alvarado, I. Magaña-Sánchez & J. C. Cristóbal-Aguilar. 2022. Effect of the El Niño 2015-16 on the assemblages of reef building sclerobionts in a coral reef from the eastern Pacific coast. Marine Biology 169(8): 106. DOI: 10.1007/s00227-022-04083-2 [ Links ]

Orrante-Alcaraz, J. M., J. L. Carballo & B. Yáñez. 2023. Seasonal net calcification by secondary calcifiers in coral reefs of the Eastern Tropical Pacific Ocean. Marine Biology 170(2): 16. DOI: 10.1007/s00227-022-04158-0 [ Links ]

Price, N. N., S. Muko, L. Legendre, R. Steneck, M. J. H. van Oppen, R. Albright, P. Ang Jr., R. C. Carpenter, A. P. Y. Chui, T. -Y. Fan, R. D. Gates, S. Harii, H. Kitano, H. Kurihara, S. Mitarai., J. L. Padilla-Gamiño, K. Sakai, G. Suzuki & P. J. Edmunds. 2019. Global biogeography of coral recruitment: Tropical decline and subtropical increase. Marine Ecology Progress Series 621: 1-17. DOI: 10.3354/meps12980 [ Links ]

Price, N. N., T. R. Martz, R. E. Brainard & J. E. Smith. 2012. Diel Variability in Seawater pH Relates to Calcification and Benthic Community Structure on Coral Reefs. PLoS One 7(8): e43843. DOI: 10.1371/journal.pone.0043843 [ Links ]

Richmond, R. H. 1987. Energetic relationships and biogeographical differences among fecundity, growth, and reproduction in the reef coral Pocillopora damicornis. Bulletin of Marine Science 41(2): 594-604. [ Links ]

Richmond, R. H. 1997. Reproduction and recruitment in corals: critical links in the persistence of reefs. In: Birkeland CE (eds) Life and death of coral reefs. Chapman & Hall, New York, pp. 175-197. [ Links ]

Santiago-Valentín, J. D., A. P. Rodríguez-Troncoso, E. Bautista-Guerrero, A. López-Pérez & A. L. Cupul-Magaña. 2020. Settlement ecology of scleractinian corals of the Northeastern Tropical Pacific. Coral Reefs 39(1): 133-146. DOI: 10.1007/s00338-019-01872-y [ Links ]

Soong, K., M. H. Chen, C. L. Chen, C. F. Dai, T. Y. Fan, J. J. Li, H. Fan, K. Kou & H. Hsieh. 2003. Spatial and temporal variation of coral recruitment in Taiwan. Coral Reefs 22(3): 224-228. DOI: 10.1007/s00338-003-0311-8 [ Links ]

Tanvet, C., F. Benzoni, C. Peignon, G. Thouzeau & R. Rodolfo-Metalpa. 2022. High coral recruitment despite coralline algal loss under extreme environmental conditions. Frontiers in Marine Science 9(June): 1-15. DOI: 10.3389/fmars.2022.837877 [ Links ]

Te, F. T. 1992. Response to higher sediment loads by Pocillopora damicornis planulae. Coral Reefs 11: 131-134. DOI: 10.1007/BF00255466 [ Links ]

Tebben, J., C. A. Motti, N. Siboni, D. M. Tapiolas, A. P. Negri, P. J. Schupp, M. Kitamura, M. Hatta, P. D. Steinberg & T. Harder. 2015. Chemical mediation of coral larval settlement by crustose coralline algae. Scientific Reports 5: 1-11. DOI: 10.1038/srep10803 [ Links ]

Tomascik, T. 1991. Settlement patterns of Caribbean scleractinian corals on artificial substrata along a eutrophication gradient, Barbados, West Indies. Marine Ecology Progress Series 77(2-3): 261-269. DOI: 10.3354/meps077261 [ Links ]

Vargas-Ángel, B., C. L. Richards, P. S. Vroom, N. N. Price, T. Schils, C. W. Young, J. Smith, M. D. Johnson & R. E. Brainard. 2015. Baseline assessment of net calcium carbonate accretion rates on U.S. pacific reefs. PLoS ONE 10(12): 1-25. DOI: 10.1371/journal.pone.0142196 [ Links ]

Received: September 07, 2022; Accepted: March 27, 2023

*Corresponding author: J. Fernando Alvarado-Rodríguez: e-mail: jfalvarado15@gmail.com.

To quote as: Alvarado-Rodríguez, J. F., L. E. Calderon-Aguilera & R. A. Cabral-Tena. 2023. Recruitment of Pocillopora coral on experimental tiles in the Mexican Pacific. Hidrobiológica 33 (3): 367-370.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License