SciELO - Scientific Electronic Library Online

 
vol.50 número2Estado actual de los sistemas bioelectroquímicos: factibilidad de su uso para aumentar la producción ruminal de propionato índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Agrociencia

versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Resumen

RUIZ-SANCHEZ, Esaú et al. Antifungal activity and molecular identification of native strains of Bacillus subtilis. Agrociencia [online]. 2016, vol.50, n.2, pp.133-148. ISSN 2521-9766.

The bioprospection for antagonistic bacteria, as biological control agents to manage plant pathogenic fungi, is a preponderant activity to reduce the use of chemical fungicides. The bacterium Bacillus subtilis has shown an excellent capacity to inhibit the growth and sporulation of a wide variety of plant pathogenic fungi. The phenotypic and biochemical characteristics to differentiate among subspecies of B. subtilis vary at the regional level. In this research, Bacillus strains were isolated from the Yucatan Peninsula in Mexico and their antagonistic activities were assessed by direct confrontation in a completely randomized design. To identify the most active strains, molecular characterization was performed. For an accurate identification, partial 16S rRNA, gyrA and rpoB genes were sequenced and compared with those deposited in the GenBank. The most active strains CBCC2, CBMT2, CBMN22, CBRF24, CBCK36, CBCK47, and CBMT51 caused 32 to 78 % inhibition of mycelial growth in Alternaria alternata, Helminthosporium rostratum and Curvularia lunata in direct confrontation tests; likewise the cell-free culture filtrates of these Bacillus strains showed significant differences (p≤0.05) in the degree of inhibition of conidial germination of the plant pathogenic fungi. The amplification, sequencing and comparison of 16S rRNA, gyrA and rpoB genes showed that the strains had 95 to 100 % identity with Bacillus subtilis subsp. inaquosorum and B. subtilis subsp. subtilis. The gyrA gene showed the highest evolutionary rate using the analysis of phylogenetic relationship within the strains studied.

Palabras llave : Bacillus subtilis; biocontrol; gene-protein sequence; DNA gyrase; RNA polymerase.

        · resumen en Español     · texto en Español | Inglés