SciELO - Scientific Electronic Library Online

 
vol.28 número1Lightweight CNN for Detecting Microcalcifications Clusters in Digital MammogramsCorn/Weed Plants Detection Under Authentic Fields based on Patching Segmentation and Classification Networks índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Resumen

MOLEFE, Mohale E.  y  TAPAMO, Jules R.. Classifying Roads with Multi-Step Graph Embeddings. Comp. y Sist. [online]. 2024, vol.28, n.1, pp.257-270.  Epub 10-Jun-2024. ISSN 2007-9737.  https://doi.org/10.13053/cys-28-1-4891.

Machine learning-based road-type classification is pivotal in intelligent road network systems, where accurate network modelling is crucial. Graph embedding methods have emerged as the leading paradigm for capturing the intricate relationships within road networks. However, their effectiveness hinges on the quality of input features. This paper introduces a novel two-stage graph embedding approach used to classify road-type. The first stage employs Deep Autoencoders to produce compact representation of road segments. This compactified representation is then used, in the second stage, by graph embedding methods to generate an embedded vectors, leveraging the features of neighbouring segments. Results achieved, with experiments on realistic city road network datasets, show that the proposed method outperforms existing approaches with respect to classification accuracy.

Palabras llave : Road type classification; road networks intelligent systems; graph embedding methods; deep autoencoder.

        · texto en Inglés     · Inglés ( pdf )