SciELO - Scientific Electronic Library Online

 
vol.13 número1La electrobiorremediación como una tecnología híbrida en el tratamiento de suelo contaminado con hidrocarburos totales de petróleoEfecto del cocimiento, anillado y almacenamiento en la digestibilidad y las características fisicoquímicas de harina de plátano verde índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.1 Ciudad de México abr. 2014

 

Artículos de investigación

 

Utilización de materiales a base de quitina y quitosano en la inmovilización de proteasas: efectos en su estabilización y aplicaciones

 

Utilization of chitin and chitosan based materials for protease immobilization: stabilization effects and applications

 

J.A. Salazar-Leyva1, J. Lizardi-Mendoza1, J.C. Ramírez-Suarez1, G. García-Sánchez1, J.M. Ezquerra-Brauer2, E.M. Valenzuela-Soto1, M.G. Carvallo-Ruiz1, M.E. Lugo-Sánchez1 y R. Pacheco-Aguilar1*

 

1 Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, C.P. 83304. Hermosillo, Sonora, México. *Autor para la correspondencia. E-mail: rpacheco@ciad.mx Tel/Fax. 662-280-04-21 Ext. 525.

2 Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora. Rosales y Niños Héroes SN. Hermosillo, Sonora, México.

 

Received September 17, 2013.
Accepted November 20, 2013.

 

Resumen

Las enzimas proteolíticas poseen un amplio campo de aplicación en diversas áreas de la industria, por lo que la búsqueda de estrategias para optimizar su desempeño catalítico es de gran importancia. La inmovilización de enzimas en soportes sólidos es una tecnología que induce cambios a nivel estructural en los sistemas catalíticos inmovilizados, ocasionando que las características de reacción de estos se vea mejorada notablemente, permitiendo, además, la posibilidad de utilizar repetidamente a las enzimas inmovilizadas en un mismo proceso. La quitina y su derivado el quitosano, son compuestos que poseen propiedades funcionales que los convierten en excelentes materiales para ser utilizados como soportes en la inmovilización de enzimas. Este artículo de revisión discute los efectos que causa el proceso de inmovilización en materiales a base de quitina y quitosano sobre la estabilidad bioquímica y operacional de enzimas proteolíticas; de igual forma, se presentan algunas aplicaciones de los sistemas catalíticos inmovilizados.

Palabras clave: inmovilización, proteasas, quitina, quitosano, estabilidad.

 

Abstract

Proteolytic enzymes have a wide range of applications in different industrial fields therefore the development of strategies focused in the optimization of their catalytic performance is a topic of great interest. Enzyme immobilization onto solid supports induces changes at structural level in the immobilized systems, and consequently some reaction characteristics can be enhanced; furthermore, immobilized enzymes can be reused in the same process. Due to the unique physicochemical and functional properties that chitin and its derivate chitosan possess, these biopolymers are an excellent option as support for enzyme immobilization. This review discusses the effects on the biochemical and operational performance of proteases immobilized in chitin and chitosan based materials. Some aspects related with the industrial applications of the immobilization systems are also mentioned.

Keywords: immobilization, proteases, chitin, chitosan, stability.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Agulló, E., Rodriguez, M.S., Ramos, V. y Albertengo, L. (2003). Present and future role of chitin and chitosan in food. Macromolecular Bioscience 3, 521-530.         [ Links ]

Ahmed, S. A., Saleh, S. A. y Abdel-Fattah, A. F. (2007). Stabilization of Bacillus licheniformis ATCC 21415 alkaline protease by immobilization and modification. Australian Journal of Basic and Applied Sciences 1, 313-322.         [ Links ]

Al-Adhami, A. J., Bryjak, J., Greb-Markiewicz, B. y Peczyńska-Czoch, W. (2002). Immobilization of wood-rotting fungi laccases on modified cellulose and acrylic carriers. Process Biochemistry 37, 1387-1394.         [ Links ]

Alloue, W. A. M., Destain, J., El Medjoub, T., Ghalfi, H., Kabran, P. y Thonart, P. (2008). Comparison of Yarrowia lipolytica lipase immobilization yield of entrapment, adsorption, and covalent bond techniques. Applied Biochemistry and Biotechnology 150, 51-63.         [ Links ]

Altun, G.D. y Cetinus, S.A. (2007). Immobilization of pepsin on chitosan beads. Food Chemistry 100, 964-971.         [ Links ]

Ansari, S. A. y Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnology Advances 30, 512-523.         [ Links ]

Azarnia, S., Lee, B. H., St-Gelais, D., Champagne, C. P. y Kilcawley, K. N. (2010). Effect of free or encapsulated recombinant aminopeptidase of Lactobacillus rhamnosus S93 on acceleration of cheddar cheese ripening. Food Biotechnology 24, 135-149.         [ Links ]

Bacheva, A., Isakov, M., Lysogorskaya, E., Macquarrie, D. y Philippova, I. Y. (2008). Biocomposite of subtilisin Carlsberg with chitosan as an effective biocatalyst for hydrolysis and synthesis of peptides. Russian Journal of Bioorganic Chemistry 343, 334-338.         [ Links ]

Barberies, S., Guzmán, F. e Illanes, A. (2008). Proteases as Catalysts for Peptide Synthesis. En: Enzyme biocatalysis: Principles and Applications. (A. Illanes, ed.), Pp. 257. Springer Verlag, Berlin.         [ Links ]

Bautista-Baños, S., Hernández-Lauzardo, A., Velázquez-del Valle., M., Hernández-López, M., Ait Barka, E., Bosquez-Molina, E. y Wilson, C. (2006). Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection 25, 108-118.         [ Links ]

Beilen, J. B. v. y Li, Z. (2002). Enzyme technology: an overview. Current Opinion in Biotechnology 13, 338-344.         [ Links ]

Benkhelifa, H., Bengoa, C., Larre, C., Guibal, E., Popineau, Y. y Legrand, J. (2005). Casein hydrolysis by immobilized enzymes in a torus reactor. Process Biochemistry 401, 461-467.         [ Links ]

Betigeri, S. S. y Neau, S. H. (2002). Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23, 3627-3636.         [ Links ]

Bhandari, S., Gupta, V.K. y Singh, H. (2008). Enhanced stabilization of mungbean thiol protease immobilized on glutaraldehydeactivated chitosan beads. Biocatalysis and Biotransformation 27, 71-77.         [ Links ]

Bickerstaff, G.F. (1997). Immobilization of enzymes and cells. Some practical considerations. En: Immobilization of Enzymes and Cells (G.F. Bickerstaff, ed.) Pp. 1-11. Humana Press, Totowa.         [ Links ]

Bissett, F. y Sternberg, D. (1978). Immobilization of Aspergillus beta-glucosidase on chitosan. Applied and Environmental Microbiology 35, 750-755.         [ Links ]

Brady, D. y Jordaan, J. (2009). Advances in enzyme immobilization. Biotechnology Letters 31, 1639-1650.         [ Links ]

Brena, B.M. y Batista-Viera, F. (2006). Immobilization of Enzymes. A literature survey. En: Immobilization of enzymes and cells. (J.M. Guisan ed.) pp. 15-30. Humana Press, Towota.         [ Links ]

Bruins, M. E., Janssen, A. E. y Boom, R. M. (2001). Thermozymes and their applications. Applied Biochemistry and Biotechnology 90, 155-186.         [ Links ]

Cao, L., van Rantwijk, F. y Sheldon, R. A. (2000). Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Organic Letters 2, 1361-1364.         [ Links ]

Castro, A., González, I., Tzompantzi, F. y Viniegra-González, G. (2013). Influence of the type of support and immobilization on the activity and stability of laccase enzyme (Trametes versicolor). Revista Mexicana de Ingeniería Química 12, 241-255.         [ Links ]

Çetinus, Ş.A. y Öztop, N.H. (2003). Immobilization of catalase into chemically crosslinked chitosan beads. Enzyme and Microbial Technology 32, 889-894.         [ Links ]

Chiou, S. H., Hung, T. C., Giridhar, R. y Wu, W. T. (2007). Immobilization of lipase to chitosan beads using a natural cross-linker. Preparative Biochemistry and Biotechnology 37, 265-275.         [ Links ]

Cooney, M.J. (2011). Kinetic measurements for enzyme immobilization. En: Enzyme Stabilization and Immobilization: Methods and protocols. Methods in Molecular Biology. (S.D. Minteer, ed.), Pp. 207-225). Springer Science, New Jersey.         [ Links ]

Cowan, D. A. y Fernandez-Lafuente, R. (2011). Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme and Microbial Technology 494, 326-346.         [ Links ]

Cui, J. D. y Jia, S. R. (2013). Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Critical Reviews in Biotechnology doi:10.3109/07388551.2013.795516.         [ Links ]

Datta, S., Christena, L. R. y Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 31, 1-9.         [ Links ]

Dhananjay, S. y Mulimani, V. (2008). Optimization of immobilization process on crab shell chitosan and its application in food processing. Journal of Food Biochemistry 32, 521-535.         [ Links ]

Díaz-Rojas, E.I., Argüelles-Monal, W.M., Higuera-Ciapara, I., Hernández, J., Lizardi-Mendoza, J. y Goycoolea, F.M. (2006). Determination of chitin and protein contents during the isolation of chitin from shrimp waste. Macromolecular Bioscience 6, 340-347.         [ Links ]

Dwevedi, A. y Kayastha, A. M. (2009). Stabilization of β-galactosidase (from peas) by immobilization onto Amberlite MB-150 beads and its application in lactose hydrolysis. Journal of Agricultural and Food Chemistry 57, 682-688.         [ Links ]

El-Sayed, A. y Shindia, A. (2011). Characterization and immobilization of purified Aspergillus flavipesl-methioninase: continuous production of methanethiol. Journal of Applied Microbiology 111, 54-69.         [ Links ]

Fágáin, C. O. (1995). Understanding and increasing protein stability. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1252, 1-14.         [ Links ]

Ferraro, V., Cruz, I. B., Jorge, R. F., Malcata, F. X., Pintado, M. E. y Castro, P. M. L. (2010). Valorisation of natural extracts from marine source focused on marine by-products: A review. Food Research International 439, 2221-2233.         [ Links ]

Flores-Maltos, A., Rodríguez-Durán, L. V., Renovato, J., Contreras, J. C., Rodríguez, R. y Aguilar, C. N. (2011). Catalytical properties of free and immobilized Aspergillus niger tannase. Enzyme research doi:10.4061/2011/768183.         [ Links ]

Gianfreda, L. y Scarfi, M. R. (1991). Enzyme stabilization: state of the art. Molecular and Cellular Biochemistry 100, 97-128.         [ Links ]

Girigowda, K. y Mulimani, V. (2006). Hydrolysis of galacto-oligosaccharides in soymilk by κ-carrageenan-entrapped α-galactosidase from Aspergillus oryzae. World Journal of Microbiology and Biotechnology 22, 437-442.         [ Links ]

Gupta, R., Beg, Q. y Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology 591, 15-32.         [ Links ]

Gupta, K. y Jabrail, F. H. (2006). Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman. Carbohydrate Research 341, 744-756.         [ Links ]

Hanefeld, U., Gardossi, L. y Magner, E. (2009). Understanding enzyme immobilisation. Chemical Society Reviews 38, 453-468.         [ Links ]

Harish Prashanth, K. y Tharanathan, R. (2007). Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends in Food Science and Technology 18, 117-131.         [ Links ]

He, Z.Y., Christopher, B.W., Zhou, Y.T., Nie, H.L. y Zhu, L.M. (2010). Papain adsorption on chitosan-coated nylon-based immobilized metal ion (Cu2+, Ni2+, Zn2+, Co2+) affnity membranes. Separation Science and Technology 45, 525-534.         [ Links ]

Hernández-Ochoa, L., Gonzales-Gonzales, A., Gutiérrez-Mendez, N., Muñoz-Castellanos, L. y Quintero-Ramos, A. (2011). Estudio de la actividad antibacteriana de películas elaboradas con quitosano a diferentes pesos moleculares incorporando aceites esenciales y extractos de especias como agentes antimicrobianos. Revista Mexicana de Ingeniería Química 10, 455-463.         [ Links ]

Homaei, A. A., Sariri, R., Vianello, F. y Stevanato, R. (2013). Enzyme immobilization: an update. Journal of Chemical Biology. DOI 10.1007/s12154-013-0102-9.         [ Links ]

Honarkar, H. y Barikani, M. (2009). Applications of biopolymers I: chitosan. Monatshefte für Chemie-Chemical Monthly 140, 1403-1420.         [ Links ]

Huang, X.J., Ge, D. y Xu, Z.K. (2007). Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. European Polymer Journal 43, 3710-3718.         [ Links ]

Illanes, A., Altamirano, C. y Wilson, L. (2008). Homogeneous enzyme kinetics. En: Enzyme Biocatalysis: Principles and Applications. (A. Illanes, ed.), Pp. 140-148. Springer Verlag, Berlin.         [ Links ]

Iyer, P. V. y Ananthanarayan, L. (2008). Enzyme stability and stabilization-Aqueous and nonaqueous environment. Process Biochemistry 43, 1019-1032.         [ Links ]

Janeček, S. (1993). Strategies for obtaining stable enzymes. Process Biochemistry 28, 435-445.         [ Links ]

Jia, H., Zhu, G. y Wang, P. (2003). Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnology and Bioengineering 84, 406-414.         [ Links ]

Ju, H.Y., Kuo, C.H., Too, J.R., Huang, H.Y., Twu, Y.K., Chang, C.M. J., Liu, Y. C. y Shieh, C.J. (2012). Optimal covalent immobilization of α-chymotrypsin on Fe3O4-chitosan nanoparticles. Journal of Molecular Catalysis B: Enzymatic 78, 9-15.         [ Links ]

Khor, E. y Lim, L. Y. (2003). Implantable applications of chitin and chitosan. Biomaterials 24, 2339-2349.         [ Links ]

Kilinc, A., Onal, S. y Telefoncu, A. (2002). Stabilization of papain by modification with chitosan. Turkish Journal of Chemistry 26, 311-316.         [ Links ]

Kirk, O., Borchert, T. V. y Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology 13, 345-351.         [ Links ]

Kirkkopru, I., Alpaslan, C., Omay, D. y Güvenilir, Y. (2006). Use of different adsorbents for sorption and Bacillus polymyxa protease immobilization. Applied Biochemistry and Biotechnology 132, 1034-1040.         [ Links ]

Krajewska, B. (2004). Application of chitinand chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology 35, 126-139.         [ Links ]

Krajewska, B., Leszko, M. y Zaborska, W. (1990). Urease immobilized on chitosan membrane: preparation and properties. Journal of Chemical Technology and Biotechnology 48, 337-350.         [ Links ]

Kumari, R., Gupta, S., Singh, A. R., Ferosekhan, S., Kothari, D. C., Pal, A. K. y Jadhao, S. B. (2013). Chitosan nanoencapsulated exogenous trypsin biomimics zymogen-like enzyme in fish gastrointestinal tract. PloS one 8, 1-12.         [ Links ]

Kurita, K. (2001). Controlled functionalization of the polysaccharide chitin. Progress in Polymer Science 26, 1921-1971.         [ Links ]

Kurita, K. (2006). Chitin and chitosan: functional biopolymers from marine crustaceans. Marine Biotechnology 8, 203-226.         [ Links ]

Langmuir, I. y Schaefer, V.J. (1938). Activities of urease and pepsin monolayers. Journal of the American Chemical Society 60, 1351-1360.         [ Links ]

Li, J., Cai, J., Zhong, L. y Du, Y. (2012). Immobilization of a protease on modified chitosan beads for the depolymerization of chitosan. Carbohydrate Polymers 874, 2697-2705.         [ Links ]

Li, J., Du, Y., Sun, L., Liang, H., Feng, T., Wei, Y. y Yao, P. (2006). Chitosaneous hydrogel beads for immobilizing neutral protease for application in the preparation of low molecular weight chitosan and chito-oligomers. Journal of Applied Polymer Science 101, 3743-3750.         [ Links ]

Liu, C.G., Desai, K.G. H., Chen, X.G. y Park, H.J. (2005). Preparation and characterization of nanoparticles containing trypsin based on hydrophobically modified chitosan. Journal of Agricultural and Food Chemistry 535, 1728-1733.         [ Links ]

Macquarrie, D. J. y Hardy, J. J. (2005). Applications of functionalized chitosan in catalysis. Industrial and Engineering Chemistry Research 44, 8499-8520.         [ Links ]

Mahmoud, D. A. y Helmy, W. A. (2009). Potential application of immobilization technology in enzyme and biomass production (Review Article). Journal of Applied Sciences Research 5, 2466-2476.         [ Links ]

Manrich, A., Galvão, C., Jesus, C. D., Giordano, R. C. y Giordano, R. L. (2008). Immobilization of trypsin on chitosan gels: Use of diferent activation protocols and comparison with other supports. International Journal of Biological Macromolecules 43, 54-61.         [ Links ]

Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J. M. y Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology 40, 1451-1463.         [ Links ]

Matsumoto, M. y Ohashi, K. (2003). Effect of immobilization on thermostability of lipase from Candida rugosa. Biochemical Engineering Journal 14, 75-77.         [ Links ]

Matto, M. y Husain, Q. (2006). Entrapment of porous and stable concanavalin A-peroxidase complex into hybrid calcium alginate-pectin gel. Journal of Chemical Technology and Biotechnology 81, 1316-1323.         [ Links ]

Matto, M. y Husain, Q. (2009). Calcium alginatestarch hybrid support for both surface immobilization and entrapment of bitter gourd (Momordica charantia) peroxidase. Journal of Molecular Catalysis B: Enzymatic 57, 164-170.         [ Links ]

Moehlenbrock, M.J. y Minteer, S.D. (2011). Introduction to the field of enzyme immobilization and stabilization. En: Enzyme Stabilization and Immobilization: Methods and Protocols. (S.D. Minteer, ed.) Pp. 1-7 Springer Science: Clifton.         [ Links ]

Motoi, H., Fukudome, S. y Urabe, I. (2004). Continuous production of wheat gluten peptide with foaming properties using immobilized enzymes. European Food Research and Technology 219, 522-528.         [ Links ]

Mourya, V. e Inamdar, N. N. (2008). Chitosanmodifications and applications: opportunities galore. Reactive and Functional Polymers 68, 1013-1051.         [ Links ]

Nelson, D.L., Cox, M.M. y Lehninger, A.L. (2008). Principles of Biochemistry. Quinta edición. Freeman and Company, New York.         [ Links ]

Nelson, J. y Griffn, E.G. (1916). Adsorption of invertase. Journal of the American Chemical Society 38, 1109-1115.         [ Links ]

Nelson, J. y Hitchcock, D.I. (1921). The activity of adsorbed invertase. Journal of the American Chemical Society 43, 1956-1961.         [ Links ]

Novick, S.J. y Rozzell, J.D. (2005). Immobilization of enzymes by covalent attachment. En: Microbial Enzymes and Biotransformations, (J.L. Barredo ed.) Pp. 247-271. Humana Press, Totowa.         [ Links ]

Rasmussen, R. S. y Morrissey, M. T. (2007). Marine biotechnology for production of food ingredients. Advances in Food and Nutrition Research 52, 237-292.         [ Links ]

Ravi Kumar, M.V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers 46, 1-27.         [ Links ]

Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Progress in Polymer Science 31, 603-632.         [ Links ]

Sangeetha, K. y Emilia Abraham, T. (2008). Investigation on the development of sturdy bioactive hydrogel beads. Journal of Applied Polymer Science 107, 2899-2908.         [ Links ]

Sheldon, R. A. (2011). Characteristic features and biotechnological applications of crosslinked enzyme aggregates (CLEAs). Applied Microbiology and Biotechnology 92, 467-477.         [ Links ]

Sheldon, R.A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis and Catalysis 349, 1289-1307.         [ Links ]

Singh, A.N., Suthar, N., Singh, S. y Dubey, V.K. (2011). Glutaraldehyde activated chitosan matrix for immobilization of a novel cysteine protease, procerain B. Journal of Agricultural and Food Chemistry 59, 6256-6262.         [ Links ]

Singh, R. K., Tiwari, M. K., Singh, R. y Lee, J.K. (2013). From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes. International Journal of Molecular Sciences 14, 1232-1277.         [ Links ]

Synowiecki, J. y Al-Khateeb, N. A. (2003). Production, properties, and some new applications of chitin and its derivatives. Critical Reviews in Food Science and Nutrition 43, 145-171.         [ Links ]

Talbert, J. N. y Goddard, J. M. (2012). Enzymes on material surfaces. Colloids and Surfaces B: Biointerfaces 93, 8-19.         [ Links ]

Talbert, J. N. y Hotchkiss, J. H. (2012). Chitosan-tethered microspheres for lactase immobilization. Journal of Molecular Catalysis B: Enzymatic 78, 78-84.         [ Links ]

Tanaka, H., Matsumura, M. y Veliky, I. (1984). Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnology and Bioengineering 26, 53-58.         [ Links ]

Tang, Z.X., Qian, J.Q. y Shi, L.-E. (2006). Characterizations of immobilized neutral proteinase on chitosan nano-particles. Process Biochemistry 415, 1193-1197.         [ Links ]

Tavano, O. L. (2013). Protein hydrolysis using proteases. An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic 90, 1-11.         [ Links ]

Tischer, W. y Wedekind, F. (1999). Immobilized enzymes: methods and applications. En: Biocatalysis-from Discovery to Application (W.D. Fessner, A. Archelas, D. C. Demirjian, R. Furstoss, H. Griengl, K. E. Jaeger, E. Morís-Varas, R. Öhrlein, M. T. Reetz, J.-L. Reymond, M. Schmidt, S. Servi, P. C. Shah, W. Tischer y F. Wedekind, eds.), Pp. 95-126. Springer, Berlin.         [ Links ]

Veselova, I., Kireiko, A. y Shekhovtsova, T. (2009). Catalytic activity and the stability of horseradish peroxidase increase as a result of its incorporation into a polyelectrolyte complex with chitosan. Applied Biochemistry and Microbiology 45, 125-129.         [ Links ]

Wang, P. (2006). Nanoscale biocatalyst systems. Current Opinion in Biotechnology 17, 574-579.         [ Links ]

Wohlgemuth, R. (2010). Biocatalysis-key to sustainable industrial chemistry. Current Opinion in Biotechnology 21, 713-724.         [ Links ]

Wu, J., Luan, M. y Zhao, J. (2006). Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads. International Journal of Biological Macromolecules 39, 185-191.         [ Links ]

Xi, F., Wu, J., Jia, Z. y Lin, X. (2005). Preparation and characterization of trypsin immobilized on silica gel supported macroporous chitosan bead. Process Biochemistry 408, 2833-2840.         [ Links ]

Zhang, B., Zhang, L., Wang, D.F. y Sun, J.P. (2011). Improvement of purification of trypsin inhibitor from wild soybean (Glycine Soja Sieb. & Zucc.) using chitosan resin-immobilized trypsin. Journal of Food Biochemistry 356, 1660-1670.         [ Links ]

Zhang, J., Zhang, S. y Wang, Y.S. (2008). Stability of β-galactosidase immobilized on composite microspheres of artemisia seed gum and chitosan. Polymer Composites 29, 9-14.         [ Links ]

Zhang, L., Zhang, B., Lin, H., Liu, P. P., Yu, L. N. y Wang, D. F. (2008). Preparation of trypsin-immobilised chitosan beads and their application to the purification of soybean trypsin inhibitor. Journal of the Science of Food and Agriculture 88, 2332-2339.         [ Links ]

Zohuriaan-Mehr, M. J. (2005). Advances in chitin and chitosan modification through graft copolymerization: a comprehensive review. Iranian Polymer Journal 14, 235-265.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons