SciELO - Scientific Electronic Library Online

 
vol.18 número2Caracterización estructural y electroquímica de electrodos de Ni:Zn:S obtenidos por electrodepósito y baño químico para su empleo en electrolizadores alcalinosTeoría lineal del enfriamiento termoeléctrico de Peltier índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Superficies y vacío

versión impresa ISSN 1665-3521

Superf. vacío vol.18 no.2 Ciudad de México jun. 2005

 

Articles

CO adsorption on doped MgO(100) surface: A theoretical study by DFT cluster embedding

Carlos Quintanar*  ** 

V.M. Castaño* 

Reyna Caballero*** 

*Centro de Física Aplicada y Tecnología Avanzada. Universidad Nacional Autónoma de México. A.P. 1-1010, Querétaro, Querétaro, 76000, México.

**Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México D.F., México.

***Departamento de Supercómputo. Dirección General de Cómputo y de Tecnologías de Información y Comunicación, Universidad Nacional Autónoma de México. Ciudad Universitaria, 04510 México D.F., México.


Abstract

A density functional cluster embedding approach is applied to study the influences of the impurities in CO adsorption on the MgO surface. A 60-atom cluster centered at the impurity site and embedded in an array of 1680 point charges, models the doped MgO(100) surface. Cr and Ni substitutional impurities are studied in terms of their influence to the adsorption of CO on the MgO surface. The relaxations of the impurities are evaluated as well. The calculations show, that the doped surface has a larger CO- surface adsorption energy than the clean surface, 80% and 280% for Cr and Ni respectively. They predict also a bulk-ward relaxation of 0.02 for Ni, and an outwards relaxation of 0.025 for Cr.

Keywords: Density functional method; CO adsorption; MgO doped

References

[1] S. Furuyama, H. Fujii, M. Kawamura, T. Morimoto, J. Phys. Chem. 82, 1028 (1978). [ Links ]

[2] E. A. Paukshtis, R. I. Soltanov, and N. E. Yurchenko, Reaction Kinet. Catalysis Lett. 16, 93 (1981) [ Links ]

[3] C. R. Henry, C. Chapon, and C. Duriez, J. Chem. Phys. 95, 700 (1991). [ Links ]

[4] J.-W. He, C. A. Estrada, J. S. Corneille, M. -Ch. Wu, and D. Wayne Goodman, Surf. Sci. 261, 164 (1992). [ Links ]

[5] E. A. Colbourn and W. C. Mackrodt, Surf. Sci. 143, 391, (1984). [ Links ]

[6] S. A. Pope, I. H. Hillier, M. F. Guest, E. A. Colbourn , and J. Kendrick, Surf. Sci. 139, 299 (1984). [ Links ]

[7] C. Pacchioni and P. S. Bagus, in: Adsorption on Ordered Surfaces of Ionic Solids and Thin Films, Eds. H.-J. Freund and E. Umbach, Vol. 33, (Springer Series Surf. Sci. , Springer-Verlag, Berlin, 1993) p. 180. [ Links ]

[8] K. M. Neyman, S. Ph. Ruzankin, and N. Rösch, Chem. Phys. Letters 246, 6, 546, (1995). [ Links ]

[9] I.V. Yudanov, V. A. Nasluzov, K. M. Neyman , N. Rösch , Int. J. Quant. Chem. 65, 975 (1997) [ Links ]

[10] M. A. Nygren and L. G. M. Petterson, J. Chem. Phys. , 105, 9339, (1996). [ Links ]

[11] Wichtendahl, M. Rodriguez-Rodrigo, Kuhlenbeck, andH.-J. Freund . Phys, Stat. Sol. 173 93(1999). [ Links ]

[12] J. A. Snyder, D. R. Alfonso, J. E. Jaffe, Z. Lin, A. C. Hess, and M. Gutowski, J. Phys. Chem. B, 104, 4717 (2000) [ Links ]

[13] R. Soave, and G. Pacchioni, Chem. Phys. Letters, 320, 345 (2000). [ Links ]

[14] K. Sallabi, and D. B. Jack, J. Chem. Phys. , 112, 5133 (2000). [ Links ]

[15] Z. Dohnálek, G. Kimmel, S. A., Joyce Smith and B. D. Kay, J. Phys. Chem B 105, 3747 (2001). [ Links ]

[16] J. A. Rodriguez, T. Jirsak, M. Perez, L. Gonzalez, A. Maiti, J. Chem. Phys. 114, 4186 (2001). [ Links ]

[17] Damin, R. Dovesi, A. Zecchina, P. Ugliengo, Surf. Sci. 479, 255 (2001). [ Links ]

[18] Y. Xu, J. Li, Y. Zhang, and W. Chen, Surf. Sci. 525,13 (2003). [ Links ]

[19] C. Quintanar, R. Caballero, and V. M. Castaño, Int. J. Quant. Chem. 102, 820 (2005). [ Links ]

[20] G. Benedek, G. Brusdeylins, V. Senz, J. G. Skofronick, J. P. Toennies, Traeger, and R. Vollmer, Phys. Rev. B 64 (2001). [ Links ]

[21] D. Ferry, J. Suzanne, V. Panella, A. Barbien, M. A. Van Hove, and J.-P. Bibérian, J. Vac. Sci. Technol. A 16, 2261 (1998). [ Links ]

[22] D. R. Alfonso , J. A. Snyder , J. E. Jaffe , A. C. Hess ,andM. Gutowski , Phys. Rev. 62, 8318 (2000). [ Links ]

[23] N. W. Ashcroft and N. David Mermin, Solid State Physics, Holt, Rinehart and Wiston, Holt-Saunders International Editions (1976). [ Links ]

[24] H. M. Evjen Phys. Rev. 39, 675 (1932). [ Links ]

[25] A.M. Köster, G. Geudtner, A. Goursot, T. Heine, A. Vela, D.R. Salahub, deMon, NRC, Canada (2002). [ Links ]

[26] S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 58, 1200 (1980). [ Links ]

[27] L. Wilk , andS. H. Vosko , J. Phys. C., 15, 2139 (1982). [ Links ]

[28] J. P. Perdew, Y. Wang, Phys. Rev. B 33, 8800 (1986). [ Links ]

[29] M. Krack and A. M. Köster, J. Chem. Phys. 108, 3226 (1998). [ Links ]

[30] B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem. Phys. 71, 4993 (1979). [ Links ]

[31] J. W. Mintmire andB. I. Dunlap , Phys. Rev. A 25, 88 (1982). [ Links ]

[32] N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Phys. 70, 560 (1992). [ Links ]

[33] H. B. Schlegel, J. Comput. Chem. 3, 214 (1982). [ Links ]

[34] Kutzelnigg, W.; Fleisher, U.; Schindler, M. In NMR Basic Principles and Progress; Diehl, P.; Fluck, E.; Gunther, H.; Kosfeld, R.; Seelig, (J., Eds.; 23; Springer: Heidelberg 1990), p. 165. [ Links ]

[35] C. Quintanar , R. Caballero , and A. M. Koster, Int. J. Quant. Chem. 96, 483 (2004). [ Links ]

[36] D. R. Alfonso , J. A. Snyder , J. E. Jaffe , A. C. Hess ,andM. Gutowski , Phys. Rev. 62, 8318 (2000). [ Links ]

[37] Crystal Physics, A. F. Brown, Trans. -Ed., Academy Press. [ Links ]

[38] Santoni, D. B. Thoai, and J. Urban, Solid State Communications. 68, 1039 (1988). [ Links ]

[39] H. Naskamatsu, A. Sudo, S. Kawai, Surf. Sci 194, 265 (1998) [ Links ]

[40] J. B. Zhou, H. C. Lu, T. Gustafsson and P. Häberle, Surf. Sci . 302, 350 (1994). [ Links ]

[41] O. Robach, G. Renaud, A. Barbier, Surf. Science 401, 227 (1998). [ Links ]

[42] D. C. Sorescu. C. N. Rusu, and J. T. Yates, J. Phys. Chem , B 104, 4408, (2000). [ Links ]

[43] T. Ziegler, Chem. Rev. 91, 651 (1991), R. A. vam Santen, and M. Newrock, Catal. Rev. Sci. Eng 37, 557, (1995). [ Links ]

[44] D. C. Sorescu andJ. T. Yates , J. Phys. Chem B 102, 4556 (1998). [ Links ]

Received: April 12, 2005; Accepted: May 20, 2005

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License