Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista de la Facultad de Medicina (México)
versión On-line ISSN 2448-4865versión impresa ISSN 0026-1742
Resumen
LOPEZ-HERNANDEZ, Estela y SOLIS, Hugo. Temporal lobe epilepsy and hippocampal neurons from areas CA1 and CA3. Rev. Fac. Med. (Méx.) [online]. 2012, vol.55, n.5, pp.16-25. ISSN 2448-4865.
Temporal Lobe Epilepsy is the most common form of human epilepsy. Hippocampal sclerosis, neuronal loss, gliosis and hippocampal volume reduction are the representative changes of this pathology. Also some other near areas like amygdala, gyrus parahipocampal and entorrinal cortex are affected. Furthermore the neural circuits undergo activity-dependent reorganization during epileptogenesis. This brain circuits remodeling include neuronal loss (acute and delayed), neurogenesis, gliosis, plasticity (axonal and dendritic), inflammation and molecular reorganization. Two significant changes are evident, aberrant sprouting of granule cell axons in the dentate gyrus and hilar ectopic granular cells. Because temporal lobe epilepsy commonly develops after brain injury, most experimental animal models involve use of this factor. The pilocarpine-induced status epilepticus rat model may be the most widely used model of temporal lobe epilepsy. In the present work, we review the experimental support for seizure-induced plasticity in neural circuits, and then turn to evidence that seizure-induced plasticity occurs in human temporal-lobe.
Palabras llave : temporal lobe epilepsy; intracellular recording; labeled neurons; CA1 and CA3 hipocampal areas; hyperexcitability.