SciELO - Scientific Electronic Library Online

 
vol.41 número2Efectores: actores claves en la fitopatologíaHongos asociados a la declinación y muerte de Phoenix canariensis en la Ciudad de México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de fitopatología

versión On-line ISSN 2007-8080versión impresa ISSN 0185-3309

Rev. mex. fitopatol vol.41 no.2 Texcoco may. 2023  Epub 11-Ago-2023

https://doi.org/10.18781/r.mex.fit.2206-5 

Phytopathological notes

Identification and characterization of microsatellites in isolates of Peronospora tabacina collected in tobacco-producing states of Mexico

Yadira Margarita Ramos-Barraza1 

Isabel Cruz-Lachica1 

Juan Manuel Tovar-Pedraza1 

José Benigno Valdez-Torres1 

Isidro Márquez-Zequera1 

Luis Alfredo Osuna-García1 

Guillermo Gómez-González1 

Raymundo Saúl García-Estrada*  1 

1 Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, Carr. El Dorado, Km 5.5, Campo El Diez, CP 80110 Culiacán, Sinaloa, México.


Abstract

Peronospora tabacina is considered the main limiting factor in tobacco production worldwide. In Mexico, information on the genetic diversity of this pathogen is scarce; therefore, the objective of this research was to evaluate 12 microsatellites in 20 isolates collected in the states of Nayarit, Chiapas, and Veracruz. PCR amplification and sequencing of these microsatellites were performed; as well as the alignment and comparison of the sequences deposited in the GenBank database. A total of 19 isolates showed amplification for the 12 microsatellites evaluated, while in one of the isolates, the amplification of two microsatellites was not observed, it being possible to determine that P. tabacina isolates present in Nayarit, Chiapas, and Veracruz are genetically homogeneous. Regions of dinucleotides were observed, most corresponding to (GT)n repeat motifs or (TG)n variations, as well as (AC)n, (CA)n, (AT)n and (AG)n motifs. The isolates analyzed in this study can be considered products of clonal lines, therefore no genetic diversity was found in these isolates.

Keywords: Blue Mold; Oomycetes; PCR; Mildew; SSRs

Resumen

Peronospora tabacina es considerado el principal factor limitante en la producción de tabaco mundialmente. En México, la información sobre la diversidad genética de este patógeno es escasa; por lo que, el objetivo de esta investigación fue evaluar 12 microsatélites en 20 aislados recolectados en los estados de Nayarit, Chiapas y Veracruz. Se realizó la amplificación por PCR y secuenciación de estos microsatélites; así como el alineamiento y comparación de las secuencias depositadas en la base de datos del GenBank. Diecinueve aislados mostraron amplificación para los 12 microsatélites evaluados; mientras que, en uno de los aislados no se observó la amplificación de dos microsatélites, pudiéndose determinar que las cepas de P. tabacina presentes en México son genéticamente homogéneas. Se observaron regiones de dinucleótidos, la mayoría correspondientes a motivos repetidos (GT)n o variaciones (TG)n, también se visualizaron motivos (AC)n, (CA)n, (AT)n y (AG)n. Los aislados analizados en este estudio, pueden considerarse productos de líneas clonales por lo que no se observó diversidad genética en dichos aislados.

Palabras clave: Moho azul; Mildiu; Oomicetes; PCR; SSRs

Peronospora tabacina is a pathogen that causes the disease known as blue mold or tobacco mildew. In the past, it caused significant economic losses in US crops, with estimated losses of $250 million (Lucas, 1980). This oomycete infects primarily the aerial parts of plants, such as leaves. However, under favorable environmental conditions, it can infect any stage of the crop and cause systemic infections (Milholland et al., 1981; Spurr and Todd, 1982; Caiazzo et al., 2006). Its most common reproductive structures are asexual, known as sporangiophores or sporangia, containing multiple diploid nuclei. These sporangia are produced massively and are easily dispersed by wind, being the main means of reproduction and spread of this pathogen (Hall, 1989; Spring et al., 2018). Under optimal environmental conditions, this pathogen can produce over 105 sporangia/cm2 in a single lesion (Cohen, 1976).

Despite its importance, few studies have investigated the biology and population genetics of this pathogen. This may be because it is an obligate parasite, which makes it difficult to characterize and obtain a sufficient number of isolates (Derevnina et al., 2015; Nowicki et al., 2022).

Genetic variation studies in plant pathogen populations have become increasingly important due to the availability of several molecular markers. These studies have applications in detection, diagnosis, taxonomy, epidemiology, and population structure, each requiring different sampling, genetic markers, and analyses (Milgroom, 1997). Moreover, genotypic diversity measurements and patterns within populations can infer clonality or recombination (Milgroom, 1996).

DNA markers are widely used for analyzing plant pathogen population dynamics due to their high precision (Milgroom and Peever, 2003). Microsatellites, also known as Simple Sequence Repeats (SSRs), are one of the available molecular markers that offer significant advantages. They consist of short DNA sequences of 1 to 6 nucleotides, repeated a certain number of times in tandem, and are abundant in the genomes of most eukaryotic organisms (Gupta et al., 1996). Microsatellite analysis uses the PCR technique, requires small amounts of DNA, and its codominant nature makes microsatellites one of the most preferred markers for marker-assisted selection programs and genetic mapping and diversity studies (Gupta et al., 1996; Jarne and Lagoda, 1996). Microsatellites are ideal for obtaining the genetic identification and fingerprinting of many organisms, including fungi and oomycetes, that show high polymorphism.

Several studies have aimed to characterize microsatellites of Peronospora tabacina. One such study was conducted by Trigiano et al. (2012), in which 10 microsatellite loci were characterized in 44 isolates of this pathogen collected from various regions of the world. The microsatellite loci were found to be polymorphic. Polymorphism is the genetic variation through time in populations, resulting from some type of mutation. The amplification of these microsatellites allows visualizing or indicating the presence of allelic variants, which is essential for distinguishing groups, populations, isolates, species, or higher taxonomic groups, identifying the source of populations, estimating population divergences, and identifying the gene flow between natural banks or seedbeds. Furthermore, seven of the ten microsatellites characterized in the study by Trigiano et al. (2012) were evaluated by Nowicki et al. (2022), who added two additional microsatellites to their analysis to assess the genetic diversity in 122 P. tabacina isolates. Thus, the objective of the present study is to identify and characterize molecular microsatellites in isolates of Peronospora tabacina collected from tobacco fields distributed across three producing states in Mexico, using 12 microsatellites.

Leaf samples with blue mold symptoms and pathogen signs were collected from commercial tobacco fields in Nayarit, Chiapas, and Veracruz, Mexico, between 2018 and 2021. Samples were taken to the Phytopathology Laboratory of the Research Center for Food and Development Culiacán Unit, where they were air-dried daily and stored between newspapers.

DNA extraction from each P. tabacina isolate was performed using the CTAB method according to the method reported by Voigt et al. (1999). The quantification of the obtained DNA was carried out using a Nanodrop One (Thermo Scientific, USA). A polymerase chain reaction (PCR) was initially performed for genotyping and confirmation of the genus and species of P. tabacina using the specific oligonucleotides PTAB and ITS4 under specific conditions described by Ristaino et al. (2007). Subsequently, the amplification and genotyping of 12 microsatellites were performed using the method proposed by Trigiano et al. (2012) and Nowicki et al. (2022). The PCR was carried out in a 15 µL reaction volume using 7.5 µL of Master Mix, 1 µL of each oligonucleotide, 4.5 µL of water, and 1 µL of DNA (15 ng µL-1). The amplification conditions were as described by Trigiano et al. (2012). The amplified products were separated in 2% agarose gels stained with Gel Red and run in an electrophoresis chamber (BioRad, USA) at 80 V for 60 min. The expected amplicons were visualized using a Gel Doc TM XR + Imaging System photodocumentor (BioRad, USA). The purification of the amplicons was performed using the Wizard® SV Gel and PCR Clean-Up System kit (Promega, USA) following the manufacturer’s instructions.

The purified DNA products were sent for sequencing to the National Laboratory of Agricultural, Medical and Environmental Biotechnology located in San Luis Potosí, S.L.P. The obtained DNA sequences were manually aligned and edited using BioEdit Sequence Alignment Editor Software Version 7.2.5.0 (Hall, 2011). Subsequently, the consensus sequences obtained were compared with the sequences deposited in the GenBank Overview NCBI database.

A total of 20 isolates of Peronospora tabacina were collected from different tobacco fields in Nayarit, Veracruz, and Chiapas (Table 1). The PCR technique was used to process the 20 isolates using the specific oligonucleotide pairs PTAB and ITS4 for P. tabacina, resulting in a 764 bp fragment in each isolate, which confirmed the identity of the oomycete under study.

Table 1 Isolates of Peronospora tabacina collected from tobacco plants with the presence of blue mold. 

ID Aislados Localización Coordenadas
Pt1SA San Andrés, Tuxtla, Ver. 18°25´49”N95°9´14”O
Pt3SA San Andrés, Tuxtla, Ver. 18°25´17”N95°9´34”O
Pt4SA San Andrés, Tuxtla, Ver. 18°25´22”N95°9´32”O
Pt5SA San Andrés, Tuxtla, Ver. 18°25´37”N95°9´27”O
Pt6SA San Andrés, Tuxtla, Ver. 18°25´25”N95°9´58”O
Pt7SA San Andrés, Tuxtla, Ver. 18°25´41”N95°9´53”O
Pt8SA San Andrés, Tuxtla, Ver. 18°25´47”N95°9´2”O
Pt9SA San Andrés, Tuxtla, Ver. 18°25´35”N95°9´10”O
Pt10SA San Andrés, Tuxtla, Ver. 21°17´23”N98°17´35”O
Pt11SA San Andrés, Tuxtla, Ver. 21°17´12”N98°17´40”O
Pt13Ta Tantoyuca, Ver. 21°18´12”N98°21´54”O
Pt14Ta Tantoyuca, Ver. 21°18´13”N98°21´56”O
Pt15Ta Tantoyuca, Ver. 21°18´3”N98°21´24”O
Pt16Na Santiago Ixcuitla, Nay. 21°43´40”N105°15´13”O
Pt17Na Santiago Ixcuitla, Nay. 21°43´18”N105°15´35”O
Pt18Na Santiago Ixcuitla, Nay. 21°43´20”N105°15´20”O
Pt19Na Acaponeta, Nay. 22°29´21”N105°28´8”O
Pt20Na Rosamorada, Nay. 21°57´48”N105°13´8”O
Pt21Ch Congregación Reforma, Tapachula, Chis. 14°47´31”N92°18´3”O
Pt22Ch El Manzano, Tapachula, Chis. 14°45´40”N92°18´16”O

According to the analysis of the amplification of the 12 microsatellites evaluated, 19 isolates showed 100% amplification for all microsatellites evaluated. For isolate Pt14Ta from Tantoyuca, Veracruz, amplification was not observed for two of the 12 oligonucleotide pairs evaluated (Table 2). The isolate was thus considered a partially clonal strain.

Table 2 Amplification of 12 microsatellites in 20 isolates of Peronospora tabacina collected in Mexico. 

Muestras
Oligonucleótidos Pt1Sa Pt3Sa Pt4Sa Pt5Sa Pt6Sa Pt7Sa Pt8Sa Pt9Sa Pt10Sa Pt11Sa Pt13Ta Pt14Ta Pt15Ta Pt16Na Pt17Na Pt18Na Pt19Na Pt20Na Pt21 Pt22
PT034 + + + + + + + + + + + + + + + + + + + +
PT041 + + + + + + + + + + + + + + + + + + + +
PT002 + + + + + + + + + + + + + + + + + + + +
PT004 + + + + + + + + + + + + + + + + + + + +
PT007 + + + + + + + + + + + - + + + + + + + +
PT014 + + + + + + + + + + + + + + + + + + + +
PT028 + + + + + + + + + + + + + + + + + + + +
PT032 + + + + + + + + + + + + + + + + + + + +
PT047 + + + + + + + + + + + - + + + + + + + +
PT048 + + + + + + + + + + + + + + + + + + + +
PT054 + + + + + + + + + + + + + + + + + + + +
PT056 + + + + + + + + + + + + + + + + + + + +

To confirm the results, the 12 microsatellite amplicons were sequenced for isolates Pt7SA and Pt16Na, and the consensus sequences obtained were compared with sequences deposited in GenBank.

The consensus sequences showed identity percentages ranging from 95.83 to 100% (Table 3) compared to the sequences of the P. tabacina isolates from the study by Trigiano et al. (2012). It should be mentioned that for the oligonucleotide pairs of the microsatellites PT034, PT041, and PT056, poor quality was observed in the obtained sequences even though they were performed in triplicate, so it can be considered that there is some problem with their design. In all the evaluated isolates in this study, the sequences (100%) of the microsatellites comprised dinucleotide regions (Table 4), mostly corresponding to repeated motifs or structures (GT)n or variations (TG)n. Motifs (AC)n, (CA)n, (AT)n, and (AG)n were also visualized, and these were perfect repetitions since the sequences were not interrupted by non-repeated nucleotides.

Table 3 Microsatellite sequences and percentage identity compared with sequences deposited in GenBank. 

Locus Secuencias consenso No. de accesión
PT002 CTGAACCATACGATGACCCCCATGGACCGCAGGGCACGTCACGGGCTCTTGACGAAGAAAACGACAATGACTGAAGGACGTCGAGTCGACACGATGCGTGCGTGTGTGTGTGTGTGTGTCCTATGCAGTTGAGTTGTCCCTTTCTAGTGCACGTGGAG JF261112 100% de identidad
PT004 CAGTGGCTCGGAACCAGCACACACACACACACACACACACAGTTCCATAATATTTCGAAGGTGGCCAGCAGCAGGAAGAGCTTTCTTCGTTGCAGCGA JF261113 100% de identidad
PT007 AGAAGCAACCAACGGACAGGAAGCGGTCGGGAAGGAAGAGATGCGAGACACACACACACACACGCGTTTCTAAGTTGGTTTGTGTATGGACAAGTAAAGAGGGAAATGCGTGCGACAGAACGAACGGGTAATGGAGGAGACGAGTGTGGCAGCGGCCAGCGGACGCGCGGTCATGGCGGTGAGCAAGCGCGAGCAGAGCATGGCTGGCTGACTTTTGACT JF261114 95.91% de identidad
PT014 TATTTGTTTTCACTTGTTTGCGTGCAGTTCCGATCCGCGTTCTTGGGGGACGTACGATACGGACGCGTTTTCTGTGTGCTATTTGAGACTCGTTGCTCTGTCGTTGACTGTACAAATGTGTGTGTGTGTGTGTGTGTGTCTGTGTGACGCTCTTGTGGCGTTTTGTTTT JF261115 96.89% de identidad
PT028 TCGTTGGACGTTCATGTATGTGTGTGTGTGTGTGCTTTGTGTATTGTAGACGATTCTGCACCGCATCTATGGCAAGTCGATGGCATTGCGTTCGTTTATCCGTCGCTCGATCAATGACATGTTCTAC JF261116 100% de identidad
PT032 GAGTGGCGTCCGAAATTGGCGGTACGTGACGAGCGGCAGTTGCTCGTGCTTGATACGGGGTTTACGGACTGTTTTTGATGGTGTGTGTGTGTG JF261118 98.92% de identidad
PT034 Datos no obtenidos
PT041 Datos no obtenidos
PT047 ATACATACCTCGCAACAACCCCCCATCCTATACATGCAATAGACACACACAAACTATTCAAAATGAACCATGAAACCACACGCCAATTCTTAGTTCACTTTAAATACTATGTATACATCATATATATATATAAAAATGCATTGCCGGATACATAATAGAATCATAAATGCCTCGTCTGCATCCCTCA JF261120 100% de identidad
PT048 ACACACACAGAGAGAGAAAGAGAGAGAGAGACACACACACACACACACTGGTCATCATCCCCGTTTCGAGTGTCTTCACCTTGTTCCTCCCATTTACCGGTAGTTTTTATTGTTCAATCCAAAAATCTAAGTCCAAACCACGACCCTACATCGTCA JF261121 99.36% de identidad
PT054 GTCACTAGCTGCGTTCTCACGTCGATTGGCATGCCCGTGCTGTGCATGGTGAGCGAGCAGGACGCCTCTACAATCGGCAAAGTGAGCAGCATTGATTGCGATAAGCAAATTCGTATCAGATTGATCGAGCACTGATATGTTTGTGTGTGTGTGTGTGTCTTGTCTGTAAAGTGGGCCATGTGTGGTACGATCATGCTGTTCGGTA JF261122 99.02% de identidad
PT056 Datos no obtenidos

Table 4 Microsatellite sequences and different types of microsatellite repeat sequences identified in 20 isolates of Peronospora tabacina collected in Mexico. 

Locus Secuencias consenso Motivos o estructuras repetidas
PT002 CTGAACCATACGATGACCCCCATGGACCGCAGGGCACGTCACGGGCTCTTGACGAAGAAAACGACAATGACTGAAGGACGTCGAGTCGACACGATGCGTGCGTGTGTGTGTGTGTGTGTCCTATGCAGTTGAGTTGTCCCTTTCTAGTGCACGTGGAG GT GT GT GT GT GT GT GT GT
PT004 CAGTGGCTCGGAACCAGCACACACACACACACACACACACAGTTCCATAATATTTCGAAGGTGGCCAGCAGCAGGAAGAGCTTTCTTCGTTGCAGCGA CA CA CA CA CA CA CA CA CA CA CA CA
PT007 AGAAGCAACCAACGGACAGGAAGCGGTCGGGAAGGAAGAGATGCGAGACACACACACACACACGCGTTTCTAAGTTGGTTTGTGTATGGACAAGTAAAGAGGGAAATGCGTGCGACAGAACGAACGGGTAATGGAGGAGACGAGTGTGGCAGCGGCCAGCGGACGCGCGGTCATGGCGGTGAGCAAGCGCGAGCAGAGCATGGCTGGCTGACTTTTGACT AC AC AC AC AC AC AC AC
PT014 TATTTGTTTTCACTTGTTTGCGTGCAGTTCCGATCCGCGTTCTTGGGGGACGTACGATACGGACGCGTTTTCTGTGTGCTATTTCGAGACTCGTTGCTCTGTCGTTGACTGTACAAATGTGTGTGTGTGTGTGTGTGTGTCTGTGTGACGCTCTTGTGGCGTTTTGTTTT TG TG TG TG TG TG TG TG TG TG TG
PT028 TCGTTGGACGTTCATGTATGTGTGTGTGTGTGTGCTTTGTGTATTGTAGACGATTCTGCACCGCATCTATGGCAAGTCGATGGCATTGCGTTCGTTTATCCGTCGCTCGATCAATGACATGTTCTAC TG TG TG TG TG TG TG TG
PT032 GAGTGGCGTCCGAAATTGGCGGTACGTGACGAGCGGCAGTTGCTCGTGCTTGATACGGGGTTTACGGACTGTTTTTGATGGTGTGTGTGTGTG GT GT GT GT GT GT
PT034 Datos no obtenidos
PT041 Datos no obtenidos
PT047 ATACATACCTCGCAACAACCCCCCATCCTATACATGCAATAGACACACACAAACTATTCAAAATGAACCATGAAACCACACGCCAATTCTTAGTTCACTTTAAATACTATGTATACATCATATATATATATAAAAATGCATTGCCGGATACATAATAGAATCATAAATGCCTCTGTCTGCATCCCTCA AT AT AT AT AT AT
PT048 ACACACACAGAGAGAGAAAGAGAGAGAGAGACACACACACACACACACTGGTCATCATCCCCGTTTCGAGTGTCTTCACCTTGTTCCTCCCATTTACCGGTAGTTTTTATTGTTCAATCCAAAAATCTAAGTCCAAACCACGACCCTACATCGTCA AG AG AG AG AG AG AC AC AC AC AC AC AC AC AC
PT054 GTCACTAGCTGCGTTCTCACGTCGATTGGCATGCCCGTGCTGTGCATGGTGAGCGAGCAGGACGCCTCTACAATCGGCAAAGTGAGCAGCATTGATTGCGATAAGCAAATTCGTATCAGATTGATCGAGCACTGATATGTTTGTGTGTGTGTGTGTGTCTTGTCTGTAAAGTGGGCCATGTGTGGTACGATCATGCTGTTCGGTA TG TG TG TG TG TG TG TG
PT056 Datos no obtenidos

With the obtained data, it was determined that the P. tabacina isolates present in the tobacco fields of the main producing states in Mexico are genetically homogeneous since the amplification of the reference microsatellites was observed in the 20 isolates evaluated in this study. Likewise, in a study by Edreva et al. (1998), it was observed that P. tabacina isolates collected in Europe (France and Bulgaria) between 1978 and 1992 were genetically stable. These results were supported by the observation of a high similarity of the isoenzyme patterns of natural populations of the pathogen and the non-significant changes in these patterns. Similarly, Zipper et al. (2009) also reported genetic uniformity in European isolates of P. tabacina.

Oomycetes are diploid organisms with both asexual and sexual reproduction in their life cycle. Asexual reproduction tends to exhibit high clonality, whereas sexual reproduction generally has a higher degree of genotypic diversity (Chen and McDonald, 1996). Populations that reproduce sexually produce offspring with a high level of genetic diversity, while the variation of asexual populations is limited by mutations that can occur within populations (McDonald, 1997). Notably, P. tabacina is a pathogen that mainly reproduces asexually through sporangia and sporangiophores, while oospores, the sexual reproductive structures, are rarely observed (Blanco-Meneses et al., 2017; Nowicki et al., 2022).

These results differ from those reported by Nowicki et al. (2022), who observed high genetic diversity and gene flow using nine microsatellite molecular markers evaluated in 122 P. tabacina isolates collected on three continents (Central, Southern, and Western Europe, the Middle East, Central and North America, and Australia). However, they reported the presence of partially clonal subpopulations among the isolates they evaluated. Additionally, Nowicki et al. (2022) mentioned that the high genetic variation and population structure observed among the evaluated isolates could be explained by continuous gene flow across continents and by the exchange of infected plant material and/or the dispersal of P. tabacina sporangia over long distances through wind (LaMondia and Aylor, 2001).

The present study determined that the Peronospora tabacina isolates causing the disease known as blue mold of tobacco in the main tobacco-producing states in Mexico are genetically homogeneous.

Acknowledgments

The authors are grateful for the financial contribution of CONACYT for the realization of this project and also to the Phytopathology laboratory, technicians and researchers of the Research Center for Food and Development Culiacán Unit. CAADES and AMHPAC.

Cited literature

Blanco-Meneses M, Carbone I, and Ristaino JB. 2017. Population structure and migration of the tobacco blue mold pathogen, Peronospora tabacina, into North America and Europe. Molecular Ecology 27:737-751. https://doi.org/10.1111/mec.14453 [ Links ]

Caiazzo R, Tarantino P, Porrone F and Lahoz E. 2006. Detection and early diagnosis of Peronospora tabacina Adam in tobacco plant with systemic infection. Journal of Phytopathology154:432-435. https://doi.org/10.1111/j.1439-0434.2006.01123.x [ Links ]

Chen RS and McDonald BA. 1996. Sexual reproduction plays a major role in the genetic structure of populations of the fungus Mycosphaerella graminicola. Genetic 142:1119-1127. https://doi.org/10.1093/genetics/142.4.1119 [ Links ]

Cohen Y. 1976. Interacting effects of light and temperature on sporulation of Peronospora tabacina on tobacco leaves. Australian Journal of Biological Sciences 29:281-289. https://doi.org/10.1071/BI9760281 [ Links ]

Derevnina L, Chin-Wo-Reyes S, Martin F, Wood K, Froenicke L, Spring O and Michelmore R. 2015. Genome sequence and architecture of the tobacco downy mildew pathogen Peronospora tabacina. International Society for Molecular Plant Microbe Interactions 11:1198-1215. http://dx.doi.org/10.1094/MPMI-05-15-0112-R [ Links ]

Edreva A, Delon R, and Coussirat J. 1998. Variability of Peronospora tabacina A. an isoenzyme study. Contributions to Tobacco & Nicotine Research. Beiträge zur Tabakforschung 18:1. pp. 3-13. https://doi.org/10.2478/cttr-2013-0663 [ Links ]

Gupta PK, Balyan HS, Sharma PC and Ramesh B. 1996. Microsatellites in plants: A new class of molecular markers. Current Science 70:1. pp. 45-54. http://repository.ias.ac.in/74979/Links ]

Hall G. 1989. Peronospora hyoscyami f. sp. tabacina. CDI descriptions of pathogenic fungi and bacteria. Mycopathologia 106:183-211. http://dx.doi.org/10.1079/DFB/20056400975 [ Links ]

Hall T. 2011. BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences 2:1. pp. 60-61. https://www.researchgate.net/publication/258565830_BioEdit_An_important_software_for_molecular_biologyLinks ]

Jarne, P and Lagoda, PJL. 1996. Microsatellites, from molecules to populations and back. Trends in Ecology and Evolution 11:424-429. https://doi.org/10.1016/0169-5347(96)10049-5 [ Links ]

LaMondia JA and Aylor DE. 2001. Epidemiology and management of a periodically introduced pathogen. Biological Invasions 3:273-282. https://doi.org/10.1023/A:1015273512111 [ Links ]

Lucas GB. The war against blue mold. Science. 1980. 210 (4466):147-53. http://dx.doi.org/10.1126/science.210.4466.147. PMID: 17741271. [ Links ]

McDermott JM and McDonald BA. 1993. Gene flow in plant pathosystems. Annual Review of Phytopathology 1:353-373. https://doi.org/10.1146/annurev.py.31.090193.002033 [ Links ]

McDonald BA. 1997. The population genetics of fungi: tools and techniques. Phytopathology 87:448-453. https://doi.org/10.1094/PHYTO.1997.87.4.448 [ Links ]

Milgroom MG. 1996. Recombination and the multilocus structure of fungal populations. Annual Review Phytopathology 34:457-477. https://doi.org/10.1146/annurev.phyto.34.1.457 [ Links ]

Milgroom MG. 1997. Genetic variation and the application of genetic markers for studying plant pathogen populations. Journal of Plant Pathology 79:1-13. https://www.jstor.org/stable/41997862Links ]

Milgroom MG and Peever TL. 2003. Population biology of plant pathogens. The synthesis of plant disease epidemiology and population genetics. Plant Disease 87:608-617. https://doi.org/10.1094/PDIS.2003.87.6.608 [ Links ]

Milholland R, Papadopoulou J and Daykin M. 1981. Histopathology of Peronospora tabacina in systemically infected burley tobacco. Phytopathology 71:73-76. https://www.apsnet.org/publications/phytopathology/backissues/Documents/1981Articles/Phyto71n01_73.pdfLinks ]

Nowicki M, Hadziabdic D, Trigiano R, Runge F, Thines M, Boggess S, Ristaino J and Spring O. 2022. Microsatellite markers from Peronospora tabacina, the cause of blue mold of tobacco, reveal species origin, population structure, and high gene flow. Phytopathology 112:422-434. https://doi.org/10.1094/PHYTO-03-21-0092-R [ Links ]

Ristaino JB, Johnson A, Blanco-Meneses M and Liu B. 2007. Identification of the tobacco blue mold pathogen, Peronospora tabacina, by polymerase chain reaction. Plant Disease 91:685-691. https://doi.org/10.1094/PDIS-91-6-0685 [ Links ]

Spring O, Gomez-Zeledon J, Hadziabdic D, Trigiano RN, Thines M and Lebeda A. 2018. Biological characteristics and assessment of virulence diversity in pathosystems of economically important biotrophic oomycetes. Critical Reviews in Plant Sciences 37:439-495. https://doi.org/10.1080/07352689.2018.1530848 [ Links ]

Spurr H and Todd F. 1982. Oospores in blue mold diseased North Carolina burley and flue-cured tobacco. Tobacco Science 26:44-46. https://www.coresta.org/abstracts/oospores-blue-mold-diseased-north-carolina-burley-and-flue-cured-tobacco-35746.htmlLinks ]

Trigiano RN, Wadl PA, Dean D, Hadziabdic D, Scheffler BE, Runge F, Telle S, Thines M, Ristaino J and Spring O. 2012. Ten polymorphic microsatellite loci identified from a small insert genomic library for Peronospora tabacina. Mycologia 104:633-640. https://doi.org/10.3852/11-288 [ Links ]

Voigt K, Cigelnik E and O’donnell K. 1999. Phylogeny and PCR identification of clinically important Zygomycetes based on nuclear ribosomal-DNA sequence data. Journal of Clinical Microbiology 12:3957-3964. https://doi.org/10.1128/JCM.37.12.3957-3964.1999 [ Links ]

Zipper R, Hammer TR and Spring O. 2009. PCR-based monitoring of recent isolates of tobacco blue mold from Europe reveals the presence of two genetically distinct phenotypes differing in fungicide sensitivity. European Journal of Plant Pathology 123:367-375. https://doi.org/10.1007/s10658-008-9373-3 [ Links ]

Received: June 16, 2022; Accepted: March 05, 2023

*Corresponding autor: rsgarcia@ciad.mx

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License