SciELO - Scientific Electronic Library Online

 
vol.31 número3La melatonina: un coadyuvante potencial en el tratamiento de las demencias índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Salud mental

versión impresa ISSN 0185-3325

Resumen

GONZALEZ RAMIREZ, Adriana Estrella; DIAZ MARTINEZ, Alejandro  y  DIAZ-ANZALDUA, Adriana. Epigenetics and twin studies in psychiatric domains. Salud Ment [online]. 2008, vol.31, n.3, pp.229-237. ISSN 0185-3325.

The sequence of the human genome integrates the keystone of our life. Part of it is transcribed to RNA, which in turn provides the information required by our cells to produce proteins. Discoveries in the genetics field have been essential to medicine and have been used to develop strategies to modify, prevent and propose new therapeutic approaches for human diseases. In the 19th Century, Gregor Johann Mendel developed a theoretical model which was able to predict in an accurate way hereditary mechanisms; indeed, his laws still explain the basis of human inheritance. Almost ninety years later, James Watson and Francis Crick announced their double-helix model of the DNA molecule. Then, positional cloning and the polymerase chain reaction (PCR) were introduced; more recently, almost 99% of the sequence of our genome was made public. The current period of time is known as the post-genomic era, due to the fact that researchers are not only obtaining the complete sequences of thousands of genomes, but are also searching for clues that may help understand the mechanisms that affect gene activation and deactivation, in which epigenetic factors are also involved. In medical domains, twins constitute a suitable group to study inherited disorders. Dizygotic or fraternal twins are produced by different egg and sperm cells, and even when these two fertilization events occur simultaneously, dizygotic twins share approximately the same percentage of genetic material than any pair of siblings, that is, around 50%. Some authors have suggested that the tendency for spontaneous dizygotic twinning could be attributed to a double ovulation which is genetically determined in an autosomal dominant manner. Monozygotic, as opposed to dizygotic twins, are produced by a single zygote whose cells are dissociated and originate two independent organisms; approximately a third of monozygotic twins are separated before the 5th day after fertilization, and the rest between the 5th and the 15th day. Most monozygotic twins are very similar; nevertheless, some few exceptions prove that in fact they actually do not have to be identical. Relatives of a person with a mental disorder tend to share traits associated with this disease, especially if the patient and the relative are monozygotic twins. However, important differences may be detected even between each pair of identical twins. Parameters such as concordance and heritability have shown that a monozygotic twin can develop an inherited disorder while his or her co-twin will always be disease-free. In addition to differences in susceptibility to inherited diseases, this kind of twins can display dissimilarities in somatic cell mutations (more overtly noticeable when ageing), their set of antibodies and T cell receptors, their number of mitochondrial DNA molecules, and chromosome X inactivation patterns in women, all of which are the main subject of many ongoing studies. A recent report shows that from 160 monozygotic twin pairs who were 3 to 74 years old, epigenetic patterns were identical early in life, but differences were more obvious at older ages, especially if twins were raised apart or if they had different medical history. Medical conditions, but also environmental factors such as pregnancy tobacco exposure, physical activity, and diet could contribute to differences in epigenetic patterns. It has been shown that epigenetic modifications (or epi-mutations) are more frequent than the ones that modify DNA sequence, so they are part of the fundamental causes of biological diversity, and they show how environment can modulate gene expression and contribute to our phenotype. Even when twin studies are sometimes considered purely genetic, they also give information about the influence of environmental factors. However, it is important to consider with caution the results from this type of studies. Heritability estimates are not unchangeable facts. They depend on the sample being analyzed, the genes involved in the specific sample, the characteristics of the environmental factors which members of this group were exposed to, and the precise moment the study was done. Epigenetics refers to changes that do not alter the DNA sequence but affect gene function due to chemical modifications which mainly occur in DNA cytosines and in chromatin-related histones. Epigenetic processes are covalent modifications which include the addition of functional groups (methyl, acetyl, phosphate, etc.) or proteins (ubiquitin, SUMO, etc.) to the DNA molecule or to associated proteins. These modifications contribute to the activation or inhibition of transcription, which leads to changes in messenger ARN expression that can ultimately influence the onset of disease. Pseudogenes are still being excluded while new genes are being confirmed in our genome sequence, but the current estimates indicate that each one of our nucleated cells contains almost 22000 genes (excluding mitochondrial DNA) which encode for polypeptides and more than 4,000 whose final product is RNA. Gene expression is partially controlled by DNA coiling around globular proteins called histones, which constitute a structure known as chromatin, a DNA-protein complex that represents the packaging of 3.25 billion base pairs of our genetic information. Physical and chemical chromatin modifications can also affect gene expression by changing DNA-protein interactions; in general terms, genes are inhibited when chromatin is packed and they are active when it is free. These dynamic states are controlled by epigenetic reversible modifications on DNA methylation or by changes in histones. It has been shown that subtle epigenetic differences between any two human beings are associated with dissimilar final chromatin remodeling, as well as expression/repression of genes.

Palabras llave : Twins; epigenetics; heritability; concordance; mental disorders.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons