SciELO - Scientific Electronic Library Online

 
vol.11 número3Soporte a Colaboración Potencial y Real para Programación en Pares DistribuidaComportamiento Dinámico de Contaminantes en la Red de Distribución de Agua de la Ciudad de Cuernavaca México, una Aplicación Real de Aprendizaje por Refuerzo Distribuido Multi-Objetivo índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Comp. y Sist. vol.11 no.3 Ciudad de México ene./mar. 2008

 

Color Matching using Time Series Searching in Color Databases

 

Pareo de Colores mediante Búsqueda de Series de Tiempo en Bases de Datos de Color

 

E. M. Felipe Riverónª, J. G. Figueroa Nazunoª, A. F. Gutiérrez Tornésª, R. Barrón Fernándezª y F. I. Cervantes Alarcón

 

ª Center for Computing Research, National Polytechnic Institute, México, DF Juan de Dios Batiz s/n, esquina a Miguel Othon de Mendizabal, Col. Nueva Industrial Vallejo, P.O: 07738 e–mails: edgardo@cic.ipn.mx; jfn@cic.ipn.mx; atornes@cic.ipn.mx; rbarron@cic.ipn.mx; fabian_isr@yahoo.com.mx

 

Article received on December 06, 2005
Accepted on April 02, 2007

 

Abstract

The goal of this paper is to document the use of time series in color matching. Although time series are not commonly used for this purpose, the results obtained, based on the principle of similarity in time series using the Euclidean distance, establish the validity of its use for color matching applications. The accuracy of color matching was based on the measures of reflectivity versus wavelength of samples given by a spectrophotometer. The error estimation was calculated using a database of 1001 elements. The matching module has been tested with six samples included and not included in the database. All of them gave an error lower than the estimated absolute error of 11.36.

Keywords: Time series; Color matching; Pattern recognition; Similarity; Color management systems.

 

Resumen

El propósito de este trabajo es documentar el uso de las series de tiempo en el pareo de colores. Aunque las series de tiempo no son usadas comúnmente con este fin, los resultados obtenidos, basados en el principio de similitud en las series de tiempo mediante la distancia euclidiana, establece la validez de su uso en las aplicaciones de pareo de colores. La exactitud del pareo de colores se basó en las medidas de la reflectividad contra la longitud de onda de las muestras, dadas por un espectro fotómetro. La estimación del error fue calculada a partir de una base de datos de 1001 elementos. El módulo de pareo ha sido probado con seis muestras incluidas y no incluidas en la base de datos. Todas ellas dieron un error menor que el error absoluto estimado de 11.36.

Palabras clave: Series de tiempo; Pareo de colores; Reconocimiento de patrones; Similitud; Sistemas de administración del color.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Kaverman, J. (2002). Color matching for pad printing, Screen Printing magazine. http://www.screenweb.com/index.php/channel/7/id/1 604/        [ Links ]

2. Aquino, D., Cervantes, F., Linares, B., Felipe, E., De la Cruz, C. (2004). Telecolorimetría basada en el reconocimiento de patrones de color, Thesis, Interdisciplinary Professional School in Engineering and Advanced Technologies, National Polytechnic Institute, Mexico.        [ Links ]

3. Butts, K. (2003). Database Preparation for Successful Computer Color Matching. Techexchange.com.        [ Links ]

4. White, J.W. (1997). http://www.trumatch.com/articles/truwhite.htm        [ Links ]

5. Coudray, M.A. (2004). The Realities of Color Matching, the dynamics of color matching and color perceptions. Dynamesh.        [ Links ]

6. Kaverman, J. (2004). Diversified Printing Technique, Screen Printing magazine. http://www.screenweb.com/pad/cont/colormatch.html        [ Links ]

7. Keogh, E., Lin, J., Truppel, W. (2003). Clustering of Time Series Subsequences is Meaningless: Implications for Previous and Future Research, ICDM.        [ Links ]

8. Lin, J., Keogh, E., Lonardi, S. and Chui, B. (2003). A Novel Symbolic Representation of Time Series, with Applications to Classification, Clustering, Query by Content and Anomaly Detection, ACM SIGKDD'03, August 24–27, Washington, D.C..        [ Links ]

9. Orenstein, J. (1986). Spatial query processing in an object–oriented database system. Proc. ACM SIGMOD, pages 326–336.        [ Links ]

10. Faloutsos, C., Ranganathan, M. and Manolopoulos, Y. (1994). Fast Subsequence Matching in Time–Series Databases, SIGMOD 94–5/94, ACM.        [ Links ]

11. Agrawal, R., Faloutsos, C. & Swami, A. (1993). Efficient similarity search in sequence databases. In proceedings of the 4th Int'l Conference on Foundations of Data Organizations and Algorithms. Chicago, IL, Oct. 13–15. 69–84.        [ Links ]

12. Faloutsos, C., Equitz, M., Flickner, M., Niblack, W., Petkovic, D., and Barber, R. (1993). Efficient and effective querying by image content. Journal of Intelligent Information System.        [ Links ]

13. Zhang, H., Dong Bi, J., Back, B. (2002). The Design and Implementation of Color Matching System Based on Back Propagation, Lecture Notes in Computer Science, Vol. 2358, Springer, Proc. of the 15th Intl. Conf. on Industrial and Engineering, Applications of Artificial Intelligence and Expert Systems: Developments in Applied Artificial Intelligence, pp. 557–566.        [ Links ]

14. Tucker, A. (2002). Applied Combinatorics, John Wiley & Sons, 4th Edition, Chapter 6.        [ Links ]

15. Sharma, G. (2003). Digital Color Imaging Handbook, CRC Press, 797 p.        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons