SciELO - Scientific Electronic Library Online

 
vol.26 número1A Predictive Model for Automatic Detection of Loneliness and Social Isolation using Machine LearningMethodology to Develop a Home Energy Management System Architecture índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Resumen

ALMANZA-ORTEGA, Nelva Nely; PEREZ-ORTEGA, Joaquín; ZAVALA-DIAZ, José Crispín  y  SOLIS-ROMERO, José. Comparative Analysis of K-Means Variants Implemented in R. Comp. y Sist. [online]. 2022, vol.26, n.1, pp.125-133.  Epub 08-Ago-2022. ISSN 2007-9737.  https://doi.org/10.13053/cys-26-1-4158.

One of the ways of acquiring new knowledge or underlying patterns in data is by means of clustering algorithms or techniques for creating groups of objects or individuals with similar characteristics in each group and at the same time different from the other groups. There is a consensus in the scientific community that the most widely used clustering algorithm is K-means, mainly because its results are easy to interpret and there are different implementations. In this paper we present an exploratory analysis of the behavior of the main variants of the K-means algorithm (Hartigan-Wong, Lloyd, Forgy and MacQueen) when solving some of the difficult sets of instances from the Fundamental Clustering Problems Suite (FCPS) benchmark. These variants are implemented in the R language and allow finding the minimum and maximum intra-cluster distance of the final clustering. The different scenarios are shown with the results obtained.

Palabras llave : K-means; clustering; cluster analysis.

        · texto en Inglés     · Inglés ( pdf )