Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Resumen
ALMANZA-ORTEGA, Nelva Nely; PEREZ-ORTEGA, Joaquín; ZAVALA-DIAZ, José Crispín y SOLIS-ROMERO, José. Comparative Analysis of K-Means Variants Implemented in R. Comp. y Sist. [online]. 2022, vol.26, n.1, pp.125-133. Epub 08-Ago-2022. ISSN 2007-9737. https://doi.org/10.13053/cys-26-1-4158.
One of the ways of acquiring new knowledge or underlying patterns in data is by means of clustering algorithms or techniques for creating groups of objects or individuals with similar characteristics in each group and at the same time different from the other groups. There is a consensus in the scientific community that the most widely used clustering algorithm is K-means, mainly because its results are easy to interpret and there are different implementations. In this paper we present an exploratory analysis of the behavior of the main variants of the K-means algorithm (Hartigan-Wong, Lloyd, Forgy and MacQueen) when solving some of the difficult sets of instances from the Fundamental Clustering Problems Suite (FCPS) benchmark. These variants are implemented in the R language and allow finding the minimum and maximum intra-cluster distance of the final clustering. The different scenarios are shown with the results obtained.
Palabras llave : K-means; clustering; cluster analysis.