SciELO - Scientific Electronic Library Online

 
vol.26 número2Ensemble Recurrent Neural Network Design Using a Genetic Algorithm Applied in Times Series PredictionHybrid Quantum Genetic Algorithm for the 0-1 Knapsack Problem in the IBM Qiskit Simulator índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Resumen

NAVARRO-ALMANZA, Raúl et al. Hierarchical Decision Granules Optimization through the Principle of Justifiable Granularity. Comp. y Sist. [online]. 2022, vol.26, n.2, pp.701-723.  Epub 10-Mar-2023. ISSN 2007-9737.  https://doi.org/10.13053/cys-26-2-4252.

Interpretable Machine Learning (IML) aims to establish more transparent decision processes where the human can understand the reason behind the models’ decisions. In this work a methodology to create intrinsically interpretable models based on fuzzy rules is proposed. There is a selection to identify the rule structure by extracting the most significant elements from a decision tree by the principle of justifiable granularity. There are defined hierarchical decision granules and their quality metrics. The proposal is evaluated with ten publicly available datasets for classification tasks. It is shown that through the principle of justified granularity, rule-based models can be greatly compressed through their fuzzy representation, not only without significantly losing performance but even with compression of 40% it manages to exceed the performance of the initial model.

Palabras llave : Granular computing; neuro-fuzzy; Sugeno; hierarchical decision granules; interpretable machine learning.

        · texto en Inglés     · Inglés ( pdf )