Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Resumen
TAMAYO HERRERA, Antonio Jesús; BURGOS, Diego A. y GELBUKH, Alexander. Clinical Text Mining in Spanish Enhanced by Negation
Automatic identification of negation, uncertainty, and named entities are tasks of vital importance for clinical text mining. While several works have been published in English, only in recent years Spanish cases have been considered. In this work, we present a transfer learning framework based on a RoBERTa model pre-trained with biomedical documents and on multilingual BERT to identify diseases and organisms mentions as well as negations and uncertainty cues and scopes as a sequence labeling problem, utilizing the fact clinical datasets in Spanish for these four tasks. Our approach achieves results comparable to the state-of-the-art organism mentions identification and negation identification, competitive results in identifying diseases, and establishing state-of-the-art for uncertainty identification. Additionally, to remedy the lack of a unified dataset for the four tasks addressed, models to tackle them have been integrated into a web application that we built to allow effective clinical text mining in Spanish. The source code of this work is publicly available as well as the web application.
Palabras llave : Clinical text mining; negation scope detection; uncertainty scope detection; diseases; organisms mentions identification.