SciELO - Scientific Electronic Library Online

 
vol.27 número4Flood Prediction with Optimized Attributes and ClusteringPersonal Statistics-Based Heart Rate Evaluation Using Interval Type-2 Fuzzy Sets índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Resumen

TAMAYO HERRERA, Antonio Jesús; BURGOS, Diego A.  y  GELBUKH, Alexander. Clinical Text Mining in Spanish Enhanced by NegationDetection and Named Entity Recognition. Comp. y Sist. [online]. 2023, vol.27, n.4, pp.1169-1181.  Epub 17-Mayo-2024. ISSN 2007-9737.  https://doi.org/10.13053/cys-27-4-4783.

Automatic identification of negation, uncertainty, and named entities are tasks of vital importance for clinical text mining. While several works have been published in English, only in recent years Spanish cases have been considered. In this work, we present a transfer learning framework based on a RoBERTa model pre-trained with biomedical documents and on multilingual BERT to identify diseases and organisms mentions as well as negations and uncertainty cues and scopes as a sequence labeling problem, utilizing the fact clinical datasets in Spanish for these four tasks. Our approach achieves results comparable to the state-of-the-art organism mentions identification and negation identification, competitive results in identifying diseases, and establishing state-of-the-art for uncertainty identification. Additionally, to remedy the lack of a unified dataset for the four tasks addressed, models to tackle them have been integrated into a web application that we built to allow effective clinical text mining in Spanish. The source code of this work is publicly available as well as the web application.

Palabras llave : Clinical text mining; negation scope detection; uncertainty scope detection; diseases; organisms mentions identification.

        · texto en Inglés     · Inglés ( pdf )