Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Ingeniería, investigación y tecnología
versión On-line ISSN 2594-0732versión impresa ISSN 1405-7743
Resumen
ESPITIA-MENDEZ, Julieth Andrea y MENDOZA-ROJAS, Germán Leonardo. Methodology based on genetic algorithm for a textil industry company production scheduling. Ing. invest. y tecnol. [online]. 2021, vol.22, n.4, e1831. Epub 31-Ene-2022. ISSN 2594-0732. https://doi.org/10.22201/fi.25940732e.2021.22.4.032.
This paper presents the application of a system based on genetic algorithms, aimed at the optimization of the makespan and the amount of late works in a flexible hybrid flow shop environment in the textile industry. The methodology was evaluated in real production scenarios of the company. The developed model results reflects a decrease of C_max and U(γ), over the real company´s sample results, presenting a 79 % decrease of C_max and the reduction from 11 to 0 late work compared to the real scenarios.
Palabras llave : Makespan; late jobs; genetic algorithm; flow shop; multiobjetive.