Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
Resumen
CAMARENA-MARTINEZ, D.; OSORNIO-RIOS, R.; ROMERO-TRONCOSO, R. J. y GARCIA-PEREZ, A.. Fused Empirical Mode Decomposition and MUSIC Algorithms for Detecting Multiple Combined Faults in Induction Motors. J. appl. res. technol [online]. 2015, vol.13, n.1, pp.160-167. ISSN 2448-6736.
Detection of failures in induction motors is one of the most important concerns in industry. An unexpected fault in the induction motors can cause a loss of financial resources and waste of time that most companies cannot afford. The contribution of this paper is a fusion of the Empirical Mode Decomposition (EMD) and Multiple Signal Classification (MUSIC) methodologies for detection of multiple combined faults which provides an accurate and effective strategy for the motor condition diagnosis.
Palabras llave : : Empirical mode decomposition; high-resolution spectral analysis; induction motors; multiple-fault diagnosis.