SciELO - Scientific Electronic Library Online

 
vol.13 número1Multi-Objective Feature Subset Selection using Non-dominated Sorting Genetic Algorithm índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

Resumen

CAMARENA-MARTINEZ, D.; OSORNIO-RIOS, R.; ROMERO-TRONCOSO, R. J.  y  GARCIA-PEREZ, A.. Fused Empirical Mode Decomposition and MUSIC Algorithms for Detecting Multiple Combined Faults in Induction Motors. J. appl. res. technol [online]. 2015, vol.13, n.1, pp.160-167. ISSN 2448-6736.

Detection of failures in induction motors is one of the most important concerns in industry. An unexpected fault in the induction motors can cause a loss of financial resources and waste of time that most companies cannot afford. The contribution of this paper is a fusion of the Empirical Mode Decomposition (EMD) and Multiple Signal Classification (MUSIC) methodologies for detection of multiple combined faults which provides an accurate and effective strategy for the motor condition diagnosis.

Palabras llave : : Empirical mode decomposition; high-resolution spectral analysis; induction motors; multiple-fault diagnosis.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons