SciELO - Scientific Electronic Library Online

 
vol.12 número24Promoción de crecimiento en trigo (Triticum turgidum L. subsp. durum) por la co-inoculación de cepas nativas de Bacillus aisladas del Valle del Yaqui, MéxicoDetección de los genes phlD y hcnC en bacterias antagonistas productoras de sideróforos asociadas a Rubus fruticosus L. índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Nova scientia

versión On-line ISSN 2007-0705

Resumen

GIL RIOS, Miguel Ángel et al. Crop Images Segmentation using Adaptive Morphologic Descriptors. Nova scientia [online]. 2020, vol.12, n.24.  Epub 02-Jul-2020. ISSN 2007-0705.  https://doi.org/10.21640/ns.v12i24.2152.

This research is focused on the segmentation improvement of crop images by using adaptive morphologic descriptors instead of classic algorithms like K-means and the top-hat operator using predefined shapes like disk or diamond. Obtained results shows that using an adaptive morphologic descriptor improves the segmentation performance against the classic shapes like disc and diamond. In order to measure the process a set of 60 crop images was used including their respective ground-truth images. The images were segmented using the K-Means algorithm and the top-hat operator with the disk and diamond shapes at different sizes into a range to validate their performance. In order to generate the adaptive morphologic descriptor, the Univariated Marginal Distribution Algorithm was used with no constraints by exploring a range of different sizes. Also, performance metrics like receiver operating characteristic and accuracy rate were applied to the generated data in order to assess the results.

Palabras llave : image segmentation; morphologic descriptor; crop detection; UMDA.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )