SciELO - Scientific Electronic Library Online

 
vol.7 número especial 16El ekuaro: un sistema agroforestal tradicional michoacanoDisponibilidad forrajera de tres arbustos en la Reserva de la Biósfera Tehuacán-Cuicatlán índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias agrícolas

versión impresa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.7 spe 16 Texcoco may./jun. 2016

 

Investigation notes

Native trees for design of silvopastoral technologies in the mountain range of Huautla, Morelos

Juan Gerardo Cortez Egremy1 

Miguel Uribe Gómez2 

Artemio Cruz León2  * 

Alejandro Lara Bueno2 

José Luis Romo Lozano2 

1Posgrado en Ciencias Agroforestería para el Desarrollo Sostenible-Universidad Autónoma Chapingo. Carretera. México-Texcoco km 38.5. Chapingo, Texcoco 56230, Estado de México. México. Tel: 595 952 540.

2Universidad Autónoma Chapingo-Departamento de Suelos. Carretera. México-Texcoco, km 38.5, Chapingo, Texcoco. C. P. 56230, Estado de México. México. Tel 595 952 1540. (migueluribe123@gmail.com; etnoagronomia1@gmail.com; alarab_11@hotmail.com; jlromo@correo.chapingo.mx).


Abstract

The deforestation is a practice that contributes to environmental degradation. In order to evaluate the forage potential of tree species of the mountain range of Huautla, Morelos, a survey was conducted to rescue traditional knowledge in the use of local trees and shrubs. The survey was applied to eighteen producers of common El Limón and Los Sauces of minicipio Tepalcingo, Morelos. Informants identified ten native tree species with forage potential: Guazuma ulmifolia, Acacia cochliacanta, Leucaena leucocephala, Leucaena macrophylla, Leucaena esculenta, Spondias mombin, Spondias purpurea, Erythrina americana, Pithecellobium dulce, and Gliricidia sepium. Guazuma ulmifolia, Acacia cochliacanta, Leucaena leucocephala, Leucaena macrophylla y Leucaena esculenta, which had high frequency in the survey of producers. The germination of seeds of Leucaena esculenta, Guazuma ulmifolia and Acacia cochliacantha, was higher than 60%. The protein content in the Leucaena macrophylla was higher by 18% and 30% protein content of Guazuma ulmifolia and Leucaena leucocephala. Agronomic information reported in literature and generated during the investigation, allow to recommend appropriate management of tree species by designing silvo pastoral technologies to improve forage production for livestock and to minimize the negative impacts of livestock on natural resources.

Keywords: fodder tree; multipurpose trees; tropical dry forest

Resumen

La deforestación es una práctica que contribuye al deterioro ambiental. Con el propósito de evaluar el potencial forrajero de especies arbóreas de la Sierra de Huautla, Morelos, se aplicó una encuesta para rescatar el conocimiento tradicional en el uso de árboles y arbustos locales. La encuesta se aplicó a dieciocho productores de los ejidos El Limón y Los Sauces del Minicipio de Tepalcingo, Morelos. Los informantes identificaron diez especies arbóreas nativas con potencial forrajero: Guazuma ulmifolia, Acacia cochliacanta, Leucaena leucocephala, Leucaena macrophylla, Leucaena esculenta, Spondias mombin, Spondias purpurea, Erythrina americana, Pithecellobium dulce, y Gliricidia sepium. Guazuma ulmifolia, Acacia cochliacanta, Leucaena leucocephala, Leucaena macrophylla y Leucaena esculenta, las cuales tuvieron alta frecuencia en la encuesta aplicada a los productores. La germinación de semillas de Leucaena esculenta, Guazuma ulmifolia y Acacia cochliacantha, fue superior a 60%. El contenido de proteína en el follaje de Leucaena macrophylla fue superior en 18% y 30% al contenido de proteína de Guazuma ulmifolia y Leucaena leucocephala. La información agronómica reportada en literatura y la generada durante la investigación, permiten recomendar un manejo adecuado de las especies arbóreas mediante el diseño de tecnologías silvo pastoriles para mejorar la producción de forraje para el ganado y para minimizar los impactos negativos de la ganadería sobre los recursos naturales.

Palabras clave: arbóreas forrajeras; árboles de usos múltiples; selva baja caducifolia

Introduction

Deforestation is a strong environmental problems caused by anthropogenic activity. Much of the deforested areas are dedicated to the cultivation of pure pastures soon fall into a state of degradation (Pezo and Ibrahim, 1997). The causes of the problem are inadequate in land management, rangeland and livestock practices, such as: uncontrolled burning of pastures, systems inappropriate tillage, lack of vegetation cover, ineffective management of soil fertility and overgrazing (Ibrahim et al., 2006). Deforestation and pasture degradation results in loss of biodiversity, compaction and soil erosion, breaking the water balance in watersheds and increasing emissions of gases that contribute to global warming (Harvey et al., 2008; Nair et al., 2009; Alonso, 2011).

The use of native perennial woody species with forage potential, based on traditional animal production systems, is an alternative that offers good quality forage for animals (Solórzano et al., 2003; López et al., 2008; Pinto et al., 2010). In addition, tree species can be used in the design of technologies that control erosion and improve soil fertility; additionally, they can offer other products such as firewood, timber, fruits and seeds that generate income to producers and to provide economic family production unit (Martín, 2008) stability. Thus, the incorporation of woody perennials (trees and shrubs) in livestock production systems is a strategy that helps to offset the negative environmental impacts, diversifying livestock business generates new products and revenue, and reduce dependence on inputs external, intensifying land use resource.

In the future, animal production systems should not only increase productivity to meet the demands of food security, but also must consider the rational use of resources; as well as improve efficiency to make them more competitive, so that really contribute to improving the standard of living of rural families (Nair et al., 2010).

The natural resources of the mountain range of Huautla, in the State of Morelos, are degraded permanently because rural communities established in this area do not have permanent jobs, which favors the rent of their land for grazing livestock (Uribe et al., 2015). In addition, poor distribution of rainfall during limited forage production, causing a long season of drought in the cattle pasture does not have enough for food. Consequently, more and more trees are felled natural vegetation for the establishment of improved pastures, causing several species of wild plants and animals are at risk of disappearing due to habitat deterioration.

The optimal and sustainable utilization of tree species of tropical dry forest of the mountain range of Huautla is of utmost importance for traditional livestock production of marginalized groups living in the region. Therefore, this research aims to identify tree species with forage potential of the mountain range of Huautla, by rescuing traditional knowledge of producers to propose agroforestry technologies that promote sustainability of livestock.

Materials and methods

The research was conducted in the municipality of Tepalcingo in communities Huitchila, Los Sauces and El Limon, located south of the state of Morelos (Figure 1).

Figure 1 Location map of the Reserva de la Biósfera de la Sierra de Huautla, Morelos. Mexico (CONANP, 2005). 

The area of the Reserva de la Biósfera de la Montaña de Huautla (REBIOSH) covers an area of 59 030 hectares and has an altitudinal range from 700 to 2 200 m (CONANP, 2005). The natural boundary southwest is the Río Amacuzac and the most important hills are: Temazcal, Los Chivos, Pericón, El Jumilar, Cerro frío, Potrero los Burros and El Cuacle and mountain range of Huautla. The municipalities involved are: Amacuzac, Ayala, bridge of Ixtla, Jojutla, Tlaquiltenango and Tepalcingo, and the main towns are: Huautla, Huaxtla, Rancho Viejo, Xantiopa, Ajuchitlán, El Limón, Huixastla, Pueblo Viejo, Xochipala, Coaxintlán, El Salto and El Zapote (CONANP, 2005).

The territory of the REBIOSH is comprised of two physiographic provinces. The first includes part of Neovolcanic and consists of a variety of volcanic rocks and continental sediments of lacustrine deposits Miocene gypsum; the second province is located in the Sierra Madre del Sur, where intricate hills and plateaux with altitudes from 900 to 1 400 m (INEGI, 1981) can be seen. The topography is essentially rugged, presents a series of hills and mountains with altitudinal gradient between 1 000 and 1 700 meters (CETENAL, 1976).

This research was conducted in three stages: the first was the identification of tree species with for age potential, the second consisted of agronomic characterization of forage species, and the third in the design of agroforestry technologies.

Identification of tree species with forage potential

In order to meet the main tree species with forage potential 30 open to farmers and people involved in the management of livestock producers interviews. By observing the behavior of livestock registration in consumption and selection of forage species it was. The sample size of production units considered the formula proposed by Scheaffer et al. (1987), by selecting the random cattle farms located at predetermined transects. As a result of surveys producing five tree species most frequently reported they were chosen as forage. Of these tree species, samples of the vegetative parts, pods and fruit consumable by livestock were collected; the forage samples were dried in a forced air oven for preservation in plastic bags. Subsequently, the compositional analysis of samples of leaves, pods and fruits to obtain values of organic matter (MO), crude protein (PC), ash (CEN) and crude fiber (FC) by the methods of the AOAC (2000) was performed and neutral detergent fiber (NDF) procedure according to Van Soest et al. (1991).

It conducted a literature review on the forage potential of selected species. The 10 samples were made for each tree species selected, taking log height, diameter, number of branches, branch height and diameter of the drip area. The productivity of the species was estimated based on the method of Worthington (Blake et al., 1990), which consists of collecting the fruits from a quarter of the area of each tree crown, quadrupling the weight of the sample estimate the total fruit production of each individual.

A protocol germination of seeds of tree species was performed with forage potential by pre-germinating treatments based on the highest percentage of germination obtained in previous studies (Cisneros, 1996; Hartmann et al., 1990; Villarruel et al., 2007). The experimental germination test was carried out under greenhouse conditions. The seeds used to of Leucaena esculenta, Acacia cochliacantha and Guazuma ulmifolia,, collected in the tropical dry forest of REBIOSH, during the months of April and May 2011. The seeds were upgraded previously, separating pods and impurities were used. The pre-germinative treatments applied to each of the species were Leucaena esculenta, submerging the seeds in water at room temperature for 36 hours with water changes every 12 h (Cisneros, 1996); Acacia cochliacantha, remove a portion of the hard seed coat using a switchblade knife to remove part of the seed coat without damaging the endosperm before dipping the seeds in hot water at 70 °C for 5 min and then soaked in water at room temperature for 12 h (Hartmann et al., 1990); Guazuma ulmifolia, soak the seeds in water at 80 °C for 10 min and immersed in water at room temperature for 36 h, then wash with running water to remove the mucilage, using a piece of cloth, finally dried in the shade scarified seed (Villarruel et al., 2007).

The germination test was carried out in Styrofoam trays of 200 cavities with a substrate peat moss. In each tray 400 seeds of each species were placed 2 cm deep and irrigation was performed daily at field capacity. Counting germination was performed daily for 21 days as recommended by ISTA, (1999) to determine the percent seedling emergence using the following following: PG= (n *100)/N, where n= number of sprout and N= number of seeds sown. A percentage of above 60% was considered acceptable germination; when germination was below that percentage test was repeated using a new pre-germinative treatments.

After obtaining the data, multifactorial variance analysis (SAS, 2009) and comparison of treatment means by Tukey test (Steel et al., 1997) for statistical inferences was performed.

Finally, the information generated was analyzed by surveys, chemical composition analysis and germ tests to select and develop the most appropriate proposals for intervention to improve traditional agroforestry systems used by producers agroforestry technologies, using the criteria established in the methodology diagnosis and participatory design proposed by Raintree (1987).

Results and discussion

According to information collected in surveys to producers the five species that were most frequently use were chosen: Guazuma ulmifolia 90% (27/30 respondents), Acacia cochliacanta 90% (27/30 respondents), Leucaena leucocephala 80% (24/30 respondents), Leucaena macrophylla 73.3% (22/30 respondents) and Leucaena esculenta 66.6% (20/30 respondents).

The germination percentages were 84% for Leucaena esculenta, Guazuma ulmifolia for 73% and 61% for Acacia cochliacantha considered acceptable for pre-germination treatment.

The tree species with higher protein content in the foliage was Leucaena macrophylla, which is higher by 18% and 30% protein content Guazuma ulmifolia and Leucaena leucocephala, respectively (Table 1).

Table 1 Chemical composition (%) of three forage tree foliage in the mountain range of Huautla, Morelos. 

MO= materia orgánica; CEN= cenizas; PC= proteína cruda; FC= fibra cruda; EE= extracto etéreo; FDN= fibra detergente neutro.

Guazuma ulmifolia showed a lower ratio CEN:MO compared to Leucaena leucocephala and Leucaena macrophylla (1:7 vs 1:8.6 and 1:10, respectively), making greater contribution inferred mineral in the diet of animals when ingested foliage G. ulmifolia. Leucaena macrophylla also had higher content of FC because the foliage of the tree contains more cell wall (FND) than Leucaena leucocephala and Guazuma ulmifolia. The foliage of the three trees in free growth contain high levels of fiber, which allows us to infer moderate rates low ruminal digestibility.

In the Table 2 shows presented the nutritional composition of fruits and Guazuma ulmifolia and Acacia cochliacantha.

Table 2 Chemical composition (%) of the fruits of two fodder tree in the mountain range of Huautla, Morelos. 

MO= materia orgánica; CEN= cenizas; PC= proteína cruda; EE = extracto etéreo; FC= fibra cruda; FDN = fibra detergente neutro.

The total protein content of the fruit of the Guazuma ulmifolia was less than Acacia cochliacantha, although both tree species nitrogen input from the fruits is low. The relationship CEN:MO was similar to the Guazuma ulmifolia and the Acacia cochliacantha (1:19 and 1:17, respectively), indicating that the fruits of both trees have low mineral content. In addition, the lipid content (EE) in the fruits of the tree was low, providing a bit more Guazuma ulmifolia that the Acacia cochliacantha. Acacia cochliacantha is superior. The percentage of fiber (FC and FDN) was moderate.

As a result of the survey of 18 livestock producers located in the study area, were identified ten native tree species with forage potential: Guazuma ulmifolia, Acacia cochliacanta, Leucaena leucocephala, Leucaena macrophylla, Leucaena esculenta, Spondias mombin, Spondias purpurea, Erythrina americana, Pithecellobium dulce, and Gliricidia sepium. The local knowledge on the use and management of trees and shrubs multipurpose was considered to build the proposed alternative intervention for the sustainable management of livestock systems in rural communities of the mountain range of Huautla, in order to improve processes food production locally. It is well known that empirical knowledge is useful to promote use more efficient forage from trees and shrubs in livestock production (Vessuri, 2004).

The silvopastoral designs most commonly used in Mexico are scattered trees in pastures, hedgerows, fodder banks, windbreak barriers, grazing pastures in alleys and in natural forests. scattered trees in pastures is a silvopastoral technology in which trees and shrubs are distributed randomly within the grazing areas to provide shade to the animals on hot days or shelter on rainy days and generate other products with fodder, firewood , wood, fruits, seeds, nitrogen fixation, input of organic matter and soil protection (FIDAR, 2003). The hedgerows are rows of trees, complemented by the use of barbed wire, they serve to define paddocks, although its potential not only allows delimit boundaries but also provides fodder, firewood, timber, poles, food, soil protection and animals, and promotes biodiversity.

Fodder banks are pasture, trees and shrubs grown at high density (more than 10 000 plants ha-1) increase production and quality of forage per unit of land and contribute in animal feed, especially during dry seasons (FIDAR, 2003). The windbreak barriers are rows of trees and shrubs of different heights, set perpendicular to the wind direction. Its main function is to protect crops and animals wind mechanical action to reduce your speed, avoid loss of soil fertility, reduce wind erosion and regulate micro-climatic conditions of the cattle farm (FIDAR, 2003).

Pastures in alleys are arranged in parallel lines of trees or shrubs, along with pastures planted between the rows of trees. This silvopastoral design favors the recycling of nutrients in the soil, prevents erosion and reduce the negative effect of trampling on the ground; its main purpose is to intensify land use by providing timber, fruits, fodder and animal products, and improve soil fertility and reduce erosion processes (FIDAR, 2003). Grazing on natural forest is perhaps the oldest practice in livestock.

This silvopastoral system allows the forage potential of forests, jungles and thickets and helps in controlling undesirable plants in natural rangelands of the various agricultural regions of Mexico. In the mountain range of Huautla, the contribution of herbaceous, shrub and tree layer of the tropical dry forest is critical to conducting extensive livestock farming families in the region. The animals supplemented their diet with foliage, pods and fruits of trees and shrubs that grow in tropical dry forest, while rural families get firewood, timber, fruits, medicinal, ornamental and ceremonial plants and food from wildlife (FIDAR, 2003).

Conclusions

In the mountain range of Huautla there are woody plants with high forage potential that can be used for the design of silvopastoral technologies, which will improve traditional livestock production system. From the perspective of producers, most tree species forage potential are: Guazuma ulmifolia, Acacia cochliacantha, Leucaena leucocephala, Leucaena sculenta, Leucaena macrophylla, Erythrina americana, Spondias purpurea, Erythrina americana, Pithecellobium dulce and Gliricidia sepium. The results of the compositional analysis of foliage and fruit of the tree selected by farmers confirm the importance of local knowledge in the use and conservation of native trees, as they are high in protein and moderate digestibility of dry matter.

The traditional knowledge of producers, enriched with agronomic information generated in this investigation, allow proper management of tree species with high potential forage in the study region. The silvopastoral technologies: scattered trees in pastures, hedgerows, fodder banks, windbreak barriers, pastures in alleys and grazing in natural forests may be options to reduce the negative impacts of ranching, loss of natural vegetation and degradation soil, in the mountain range of Huautla.

Literatura citada

AOAC. 2000. Association of Official Analytical Chemists, Official Methods of Analysis. 16th ed. Arlington, VA, USA. [ Links ]

Alonso, J. 2011. Silvopastoral systems and their contribution to the environment. Cuban Journal of Agricultural Science. 45: 107-114. [ Links ]

Blake, J. G.; Loiselle, B. A.; Moermond, T. C.; Levey, D. J., & Denslow, J. S. 1990. Quantifying abundance of fruits for birds in tropical habitats. Studies in Avian Biology. 13:73-79. [ Links ]

CETENAL. 1976. Carta Topográfica 1/50 000: Mapa E14-A-79 Tilzapotla; Mapa E14-A-59 Cuernavaca; Mapa E14-A-69 Jojutla; Mapa E14-B-61 Tepalcingo. Comisión de Estudios del Territorio Nacional, México, D.F. [ Links ]

Cisneros, M. 1996. Producción de forrajes a partir de árboles proteicos. Memorias del XI Forum de Ciencia y Técnica. Bayamo, Cuba. 32 p. [ Links ]

FIDAR. 2003. Manual de capacitación: sistemas silvopastoriles, una opción para el manejo sustentable de la ganadería. Fundación para la Investigación y Desarrollo Agrícola. Santiago de Cali, Colombia. 54 p. [ Links ]

Hartmann, T. H.; Dale, E. K. and Davies, T. F. 1990. Plant Propagation: Principles and Practices. Fifth. Edition. Regents/Prentice Hall. Englewood Cliffs, New Jersey. USA. 647 p. [ Links ]

Harvey, C. A.; Guindon, C. F.; Harber, W. A.; Hamilton, D. y Murray, K. G. 2008. Importancia de los fragmentos de bosque, los árboles dispersos y las cortinas rompevientos para la biodiversidad local y regional de Monteverde, Costa Rica. In: Evaluación y conservación de la biodiversidad en paisajes fragmentados de Mesoamérica. Eds. C.A. Harvey & J.C. Sáenz. Instituto Nacional de Biodiversidad. INBIO, Santo Domingo de Heredia, Costa Rica. 289-326 pp. [ Links ]

Ibrahim, M.; Villanueva, C.; Casasola, F. y Rojas, J. 2006. Sistemas silvopastoriles como una herramienta para el mejoramiento de la productividad y restauración de la integridad ecológica de paisajes ganaderos. Pastos y Forrajes. 29: 383-419. [ Links ]

INEGI. 1981. Síntesis geográfica del estado de Morelos. Secretaría de Programación y Presupuesto, México. [ Links ]

ISTA. 1999. International rules for seed testing. Rules and annexus. Seed Science and Technology. 27:155. [ Links ]

López, H. M. A.; Rivera, L. J. A.; Ortega, R.; Escobedo, M.; Magaña, M.; Sanguinés, G. y Sierra, V. 2008. Contenido nutritivo y factores antinutricionales de plantas nativas forrajeras del norte de Quintana Rôo. Técnica Pecuaria en México. 46: 205-215. [ Links ]

Nair, P. K. R.; Kumar, B. M. and Nair, V. D. 2009. Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science. 172: 10-23. [ Links ]

Nair, P. R.; Nair, V. D.; Kumar, B. M. and Showalter, J. M. 2010. Chapter five-carbon sequestration in agroforestry systems. Advances in agronomy. 108: 237-307. [ Links ]

CONANP. 2005. Programa de Conservación y Manejo Reserva de la Biósfera Sierra de Huautla, Morelos. Comisión Nacional de Áreas Naturales Protegidas. 207 p. [ Links ]

Pérez, L. H. 2003. Potencial de árboles y arbustos forrajeros en la Trinitaria, Chiapas, México. Tesis de Maestría en Ciencias en Agroforestería para el Desarrollo Sostenible. Universidad Autónoma Chapingo. Chapingo, Texcoco, Estado de México. México. 122 p. [ Links ]

Petit, J. 1994. Árboles y arbustos forrajeros. Instituto Forestal Latinoamericano. Mérida-Venezuela. 174 p. [ Links ]

Pezo, D. y Ibrahim, M. 1997. Sistemas silvopastoriles: Una opción para el uso sostenible de la tierra en sistemas ganaderos. FIRA Boletín Informativo (México). 29: 2-44. [ Links ]

Pinto, R. R.; Hernández, D.; Gómez, Η.; Cobos, Μ. Α.; Quiroga, R. y Pezo, D. 2010. Árboles forrajeros de tres regiones ganaderas de Chiapas, México: usos y características nutricionales. Universidad y ciencia. 26: 19-31. [ Links ]

Raintree, J. B. 1987. The state of the art in agroforestry diagnosis and design. Agroforetry Systems, 5: 219-250. [ Links ]

SAS, 2009. SAS User’s Guide: Statistics (Release 9.2). SAS Inst., Inc., Cary, NC, USA [ Links ]

Scheaffer, R. L.; Mendenhall, W. y Ott, L. 1987. Muestreo Estadístico. Editorial Latinoamericana. México, DF. 250 p. [ Links ]

Steel, G. D. R.; Torrie, J. H. and Dickey, D. A. 1997. Principles and procedures of statistics: Abiometrical approach. The McGraw- Hill Companies, Inc, 637 p. [ Links ]

Solórzano, N.; Romero, F. y Cuello, N. 2008. Potencial forrajero de los bosques de Mesa de Cavacas, Estado Portuguesa, Venezuela. Revista Unellez de Ciencia y Tecnología. 21:1-17. [ Links ]

Uribe, G. M.; Cruz, L. A.; Juárez, R. D.; Lara, B. A.; Romo, L. J. L.; Valdivia, A. R. y Portillo, V. M. 2015. Importancia del diagnóstico rural para el desarrollo de un modelo agroforestal en las comunidades campesinas de la sierra de Huautla. Revista Científica Ra Ximhai. 11:197-208. [ Links ]

Van Soest, P. J.; Robertson, J. B. y Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74: 3583-3597. [ Links ]

Vessuri, H. 2004. La hibridización del conocimiento. La tecnociencia y los conocimientos locales a la búsqueda del desarrollo sustentable. Convergencia Revista de Ciencias Sociales. 35: 171-191. [ Links ]

Villarruel, F. M.; Morales, N. C. G.; López, S. O. y Santiz, M. G. 2007. Paquete tecnológico para el empleo de Guazuma ulmifolia Lam., una estrategia ecológica y productiva. En: XX Reunión Científica-Tecnológica Forestal yAgropecuaria Veracruz. IX Simposio Internacional y IV Congreso Nacional de Agricultura Sostenible. Boca del Río, Veracruz. 5p. [ Links ]

Received: March 2016; Accepted: June 2016

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons