SciELO - Scientific Electronic Library Online

 
vol.23 número2Incorporación de aspectos sociales a la generación automática de narrativas índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Resumen

CLEOFAS SANCHEZ, Laura et al. Estudio empírico del enfoque asociativo en el contexto de los problemas de clasificación. Comp. y Sist. [online]. 2019, vol.23, n.2, pp.601-617.  Epub 10-Mar-2021. ISSN 2007-9737.  https://doi.org/10.13053/cys-23-2-3026.

Investigaciones realizadas por la comunidad científica han evidenciado que el rendimiento de los clasificadores, no solamente depende de la regla de aprendizaje, sino también de las complejidades inherentes en los conjuntos de datos. Algunos clasificadores se han utilizado habitualmente en el contexto de los problemas de clasificación (tres Redes neuronales, C4.5, SVM, entre otros). No obstante, el enfoque asociativo se ha explorado más en en el ámbito de recuperación, que en la tarea de clasificación, y su rendimiento se ha analizado escasamente cuando se presentan varias complejidades en los datos. La presente investigación analiza el rendimiento del enfoque asociativo (CHA, CHAT y Alfa Beta original) cuando se presentan tres problemas de clasificación (desequilibrio de las clases, solapamiento y patrones atípicos). Los resultados evidencian que el CHAT reconoce mejor la clase minoritaria en comparación con el resto de los clasificadores en el contexto del desequilibrio de las clases. Sin embargo, el modelo CHA ignora la clase minoritaria en la mayoría de los casos. Además, el modelo CHAT exhibe la necesidad de requerir de fronteras de decisión bien definidas cuando se aplica el método de Wilson, ya que su rendimiento se incrementa. También, se notó que cuando se enfatiza un equilibrio entre las tasas, el rendimiento de tres clasificadores incrementa (CHAT, RB y RFBR). El modelo Alfa beta original sigue mostrando un desempeño pobre cuando se realiza el pre-procesamiento en los datos. El rendimiento de los clasificadores incrementa significativamente al aplicarse el método SMOTE, situación que no se presenta sin un pre-procesamiento o submuestreo, en el contexto del desequilibrio de las clases.

Palabras llave : Recuperación; clasificación; enfoque asociativo; redes neuronales; C4.5; SVM; desequilibrio; solapamiento; patrones atípicos; Wilson; selectivo; SMOTE.

        · resumen en Inglés     · texto en Español     · Español ( pdf )