SciELO - Scientific Electronic Library Online

 
vol.55 número3Synthesis of Nitrogen-, Oxygen- and Sulphur-containing Tripodal Ligands with a Trimethylbenzene CoreMembrane Model to Explain the Participation of Carotens and the Changes in Energy in Photosynthesis índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of the Mexican Chemical Society

versión impresa ISSN 1870-249X

J. Mex. Chem. Soc vol.55 no.3 Ciudad de México jul./sep. 2011

 

Article

 

Immobilization of Thermomyces lanuginosus Lipase in PVA–alginate Beads

 

Brenda Rogelina Cruz–Ortiz, Leopoldo Javier Ríos–González,* Yolanda Garza García, José Antonio Rodríguez de la Garza, and Jesús Rodríguez–Martínez

 

Departamento de Biotecnología. Universidad Autónoma de Coahuila. Blvd. V. Carranza s/n Col. República República Ote., C.P. 25280, Saltillo Coahuila, México, Tel.: +52 (844) 4155752, Fax: +52 (844) 4159534,*leopoldo.rios@uadec.edu.mx.

 

Received November 17, 2010.
Accepted April 06, 2011.

 

Abstract

Thermomyces lanuginosus lipase was immobilized in PVA–alginate beads, obtaining immobilization % in the range of 94.4–98.4% using PVA concentrations ranging from 11% to 12.5%, and with cross linking times of 45 and 60 min using boric acid. Initial reaction rate was determined in free and immobilized state by hydrolysis of p–nitrophenol palmitate. Operational stability at different pH (4–7), agitation (100–500 r.p.m.), and temperature (40–80 °C) was investigated. Results showed that pH 6 and 7 no considerable loss of enzyme activity or enzyme was observed. At temperatures over 70 °C, enzyme suffers physical damage and showed a considerable loss of activity. No significant difference was observed when agitation was varied from 100 to 500 r.p.m.

Keywords: lipase, immobilized, PVA–alginate, Thermomyces lanuginosus.

 

Resumen

Se inmovilizó la lipasa de Thermomyces lanuginosus en esferas de PVA–alginato, obteniendo un porcentaje de inmovilización del 94.4%o al 98.4%> utilizando concentraciones de PVA del 11% al 12.5%, y con tiempos de entrecruzamiento con ácido bórico de 45 y 60 min. Se determinó la velocidad inicial de forma libre e inmovilizada mediante la hidrólisis del p–nitrofenol palmitato. Se llevó a cabo un estudio de estabilidad operacional a diferente pH (4–7), velocidad de agitación (100–500 r.p.m.) y temperatura (40–80 °C). Los resultados mostraron que a pH 6 y 7 no se observó una considerable pérdida de actividad enzimática o de enzima. A temperaturas arriba de los 70 °C el biocatalizador sufrió daño físico y la enzima mostró una considerable pérdida de actividad enzimática. En la velocidad de agitación no se observó una diferencia significativa cuando se varió la velocidad de agitación de 100 a 500 r.p.m.

Palabras clave: lipasa, inmovilizada, PVA–alginato, Thermomyces lanuginosus.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Aryee, A.N.A.; Simpson, B.K.; Villalonga, R. Enzyme Microb. Technol. 2007, 40, 394–402.         [ Links ]

2. Blanco, R. M.; Calvete, J. J.; Guisan, J. M. Enzyme Microb. Technol. 1989, 11, 360–366.         [ Links ]

3. Bruno, L. M.; Coelho, J. S.; Melo, F. H. M.; Lima, J. L. World J. Microbiol. Biotechnol. 2005, 2, 189–192.         [ Links ]

4. Castro, L.D.; Rodríguez, C.; Valerio, G.; Ros, R.O. Enzyme Microb. Technol. 2005, 37, 648–654.         [ Links ]

5. Ciuffreda, P.; Loseto, A.; Manzocchi, A.; Santaniello, E. Chem. Phys. Lipids 2001, 2, 105–110.         [ Links ]

6. Cortés, A.; Fernández, R. L.; Guisán, J.M. Enzyme Microb. Technol. 2006, 39, 817–823.         [ Links ]

7. Dalla, V. R.; Sebra£ob, D.; Nascimentob, M. da G.; Soldib, V. Process Biochem. 2005, 40, 2677–2682.         [ Links ]

8. De Castro, H. F.; Anderson, W. A. Quim. Nova. 1995, 18, 544–554.         [ Links ]

9. De Castro, H. F.; Gomes, F. M.; Pereira, E. B. Biocatal. Biomacromol. 2004, 5, 17–23.         [ Links ]

10. De Castro, H. F.; Moreira, A. B. R.; Perez, V. H.; Zanin, G. M. Energy Fuels. 2007, 21, 3689–3694.         [ Links ]

11. El–Mansi, E. M. T.; Bryce C. F. A., in: Fermentation Microbiology and Biotechnology, Ed., CRC Press, 2007, 292–293.         [ Links ]

12. Fernandes, M. L. M.; Krieger, N.; Baron, A. M.; Zamora, P. P.; Ramosa, L. P.; Mitchell, D. A. J. Mol. Catal. B:Enzym. 2004, 30, 43–49.         [ Links ]

13. Gupta, M. N.; Shah, S.; Sharma, S. Energy Fuels. 2004, 18, 154–159.         [ Links ]

14. Hashimoto, S.; Furakawa, K. Biotechnol. Bioeng. 1987, 30, 52–59.         [ Links ]

15. Jeon, C.; Park, J. Y.; Yoo, Y. J. Biochem. Eng. J. 2002, 11, 159–166.         [ Links ]

16. Jyh, P. C.; Wei, S. L. Enzyme Microb. Technol. 2003, 32, 801–811.         [ Links ]

17. Lima, V.M.G.; Krieger, N.; Mitchell, D.A.; Fontana, L.D. Biochem. Eng. J. 2004, 18, 65–71.         [ Links ]

18. Long, Z. E.; Huangb, Y.; Caia, W. C.; Ouyanga, F. Process Biochem. 2004, 39, 2129–2133.         [ Links ]

19. Lowry, O. H.; Rosebrough, N. J.; Fair, A. L.; Randall R. J. J. Biol. Chem. 1951, 193, 265–275.         [ Links ]

20. Nunes, M. A. P.; Vila–Real, H.; Fernandes, P. C.; Ribeiro, M. H. L. Appl Biochem Biotechnol 2010, 2, 129–2147.         [ Links ]

21. Pattanapipitpaisal, P.; Brown, N. L.; Macaskie, L. E. Biotechnol. Lett. 2001, 23, 61–65.         [ Links ]

22. Persson, M.; Mladenoska, I.; Ernst, W.; Patrick, A. Enzyme Microb. Technol. 2002, 31, 833–843.         [ Links ]

23. Segura, R.L.; Betancor, L.; Palomo, J.M.; Hidalgo, A.; Fernández, G. L.; Terreni, M.; Mateo, C.         [ Links ];

24. Soni, K.; Madamwar, D. Process Biochem. 2001, 36, 607–611.         [ Links ]

25. Szczesna, A. M.; Antczak, T.; Rzyska, M.; Bielecki, S. J. Mol. Catal. B:Enzym. 2002, 19–20, 261–268.         [ Links ]

26. Wona, K.; Kima, S.; Kima, K. J.; Parkb, H. W.; Moona, S. J. Process Biochem. 2005, 40, 2149–2154.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons