SciELO - Scientific Electronic Library Online

 
vol.44 número3Multiphase flow reconstruction in oil pipelines by capacitance tomography using simulated annealingElectrical capacitance tomography two-phase oil-gas pipe flow imaging by the linear back-projection algorithm índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Geofísica internacional

versão On-line ISSN 2954-436Xversão impressa ISSN 0016-7169

Geofís. Intl vol.44 no.3 Ciudad de México Jul./Set. 2005

 

Articles

Geoelectrical characterization of an oil-contaminated site inTabasco, Mexico

Vladimir Shevnin1 

Omar Delgado-Rodríguez1 

Luis Fernández-Linares1 

Héctor Zegarra Martínez1 

Aleksandr Mousatov1 

Albert Ryjov2 

1 Mexican Petroleum Institute, Eje Central Lázaro Cárdenas 152, 07730 México, D.F., México E-mail: vshevnin@imp.mx

2 Moscow State Geological Prospecting Academy, Geophysical faculty, Volgina str., 9,117485, Moscow, Russia.


ABSTRACT

A geoelectrical characterization of an oil-contaminated site, where thirty years ago an oil well was drilled, was carried out using vertical electrical sounding (VES) method on 2D Resistivity Imaging technology and 2D interpretation. VES data were added by water resistivity measurements and soil resistivity analysis. The contaminated zones feature with low resistivity anomalies situated above groundwater level. The geoelectrical interpretation was compared with geochemical sampling. An inverse correlation between electrical resistivity and concentration of contaminants confirms that the oil-contamination is mature and for this reason it creates low resistivity anomalies. Petrophysical modelling allowed estimating boundary resistivity value separating clean and contaminated zones. Resistivity data were visualized as cross-sections and maps and also were recalculated into sections and maps of petrophysical parameters, useful for more precise and detailed characterization of contaminated zones.

KEY WORDS: Vertical Electrical Sounding; 2D Resistivity Imaging; oil contamination; petrophysical modelling

RESUMEN

La caracterización geoeléctrica de un sitio contaminado por hidrocarburos, donde hace treinta años fue perforado un pozo petrolero, fue realizada utilizando el método de Sondeo Eléctrico Vertical (SEV) con la tecnología de Imagen de Resistividad e Interpretación 2D de los datos adquiridos. La interpretación de los datos de SEV estuvo apoyada por mediciones de resistividad en muestras de agua y suelo. Las zonas contaminadas corresponden con anomalías de baja resistividad ubicadas encima del nivel freático. Los resultados de la interpretación geoeléctrica fueron comparados con los resultados del muestreo geoquímico. La correlación inversa existente entre la resistividad eléctrica y la concentración de contaminantes confirma la existencia de contaminación madura, la misma que crea anomalías de baja resistividad. Mediante la modelación petrofísica es posible estimar el valor de resistividad que define la frontera entre zona limpia y contaminada. Los datos de resistividad son presentados a manera de secciones y mapas, además de haber sido recalculados a secciones y mapas de parámetros petrofísicos, como herramientas útiles en la caracterización más precisa y detallada de las zonas contaminadas.

PALABRAS CLAVE: Sondeo Eléctrico Vertical; 2D tecnología de resistividad; contaminación por hidrocarburos; modelación petrofísica

Full text available only in PDF format.

BIBLIOGRAPHY

ABDEL-AAL, G. Z.; D. D. WERKEMA; W. A. SAUCK Jr. and E. ATEKWANA, 2001. Geophysical investigation of vadose zone conductivity anomalies at a former re-finery site, Kalamazoo, ML. In: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, 1-9. [ Links ]

ARCHIE, G. E., 1942. The Electric Resistivity Logs as an Aid in Determining some Reservoir Characteristics. SPE-AIME Transactions, 146, 54-62. [ Links ]

ATEKWANA, E.; D. P. CASSIDY; C. MAGNUSON; A. L. ENDRES; D. D. WERKEMA Jr. and W. A. SAUCK, 2001. Changes in geoelectrical properties accompanying microbial degradation of LNAPL. In: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, 1-10. [ Links ]

BAILEY, N. J. L.; H. R. KROUSE; C. R. EVANS and M. A. ROGERS, 1973. Alteration of Crude Oil by Waters and Bacteria - Evidence from Geochemical and Isotope Studies. Amer. Ass. Petrol. Geol. Bull., 57, 1276-1290. [ Links ]

BOBACHEV, A. A., 1994. IPI2Win software: http:// geophys.geol.msu.ru/rec_labe.htm. [ Links ]

BOBACHEV, A.A., 2003, X2IPI software: http://geophys.geol.msu.ru/x2ipi/x2ipi.html. [ Links ]

BOUYOUCOS, G. J., 1962. Hydrometer method improved for making particle size analyses of soils. Agron. J. 54(5), 464-465. [ Links ]

CLAVIER, C.; G. COATES and J. DUMANOIR, 1984. Theoretical and Experimental Bases for the Dual-Water Model for Interpretation of Shaly Sands. J. SPE, 153-168. [ Links ]

FRIDRIHSBERG, D. A., 1984. Course of colloid chemistry. L.: Khimiya, -368 pp. (In Russian). [ Links ]

GRIFFITHS, D. H. and R. D. BARKER, 1993. Two-dimensional resistivity imaging and modelling in areas of complex geology. J. Appl. Geophysics 29, 211-226. [ Links ]

JOHNSON, D. L. and P. N. SEN, 1988. Dependence of the conductivity of a porous medium on electrolyte conductivity. Physical Review B, 37, 7, 3502-3510. [ Links ]

LOKE, M. H. and R. D. BARKER, 1995. Least-squares deconvolution of apparent resistivity pseudosectious. Geophysics, 60, 1682-1690. [ Links ]

LOKE, M. H. and R. D. BARKER, 1996. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting, 44, 131-152. [ Links ]

MARION, D.; A. NUR; H. YIN and D. HAN, 1992. Compressional velocity and porosity in sand-clay mixtures. Geophysics, 57, 554-563. [ Links ]

MCGEARY, R. K. 1961. Mechanical Packing of Spherical Particles. J. Amer. Ceramic Soc., 44, 10, 513-522. [ Links ]

MODIN, I. N.; V. A. SHEVNIN; A. A. BOBATCHEV; D. K. BOLSHAKOV; D. A. LEONOV and M. L. VLADOV, 1997. Investigations of oil pollution with electrical prospecting methods. In: Proceedings of the 3rd EEGS-ES Meeting. Aarhus, Denmark, 267-270. [ Links ]

PEMEX, 2001. Annual Report. Petróleos Mexicanos, Mexico. [ Links ]

ROADES, J. D.; P. A. C. RAATS and R. J. PRATHER, 1976. Effects of liquid-phase electrical conductivity, water content and surface conductivity on bulk soil electrical conductivity. Soil Sci. Soc. Am. J., 40, 651-655. [ Links ]

RYJOV, A. 1987. The main IP peculiarities of rocks // In the book "Application of IP method for mineral deposits' research". Moscow, 1987, p. 5-23. (In Russian) [ Links ]

RYJOV, A. and V. SHEVNIN, 2002. Theoretical calculation of ground electrical resistivity and some examples of algorithm's application. In: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems. 10 pp. [ Links ]

RYJOV, A. A. and A. D. SUDOPLATOV, 1990. The calculation of specific electrical conductivity for sandy - clayed rocks and the usage of functional cross-plots for the decision of hydrogeological problems. In: "Scientific and technical achievements and advanced experience in the field of geology and mineral deposits research. Moscow, pp. 27-41. (In Russian). [ Links ]

SAUCK, W. A., 1998. A conceptual model for the geoelectrical response of LNAPL plumes in granular sediments. In: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, pp. 805-817. [ Links ]

SAUCK, W. A., 2000. A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments. J. App. Geophys., 44, 151 -165. [ Links ]

SHEVNIN, V.; O. DELGADO RODRÍGUEZ; A. MOUSATOV and A. RYJOV, 2004. Soil resistivity measurements for clay content estimation and its application for petroleum contamination study. SAGEEP-2004, Colorado Springs. p. 396-408. [ Links ]

SHEVNIN, V.; RYJOV, A.; NAKAMURA, E.; SÁNCHEZ, A.; KOROLEV, V. and MOUSATOV, A., 2002. Study of oil pollution in Mexico with resistivity sounding. In: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems. 10 pp. [ Links ]

SHEVNIN, V.; O. DELGADO-RODRÍGUEZ; A., MOUSATOV; E. NAKAMURA LABASTIDA and A. MEJÍA-AGUILAR, 2003. Oil pollution detection with resistivity sounding. Geofís. Int. , 2003. 42, 4, 603-622. [ Links ]

TABBAGH, A.; C. PANISSOD; R. GUÉRIN and P. COSENZA, 2002. Numerical modeling of the role of water and clay content in soils' and rocks' bulk electrical conductivity. J. Geophys. Res., 107, B11, 2318. [ Links ]

USEPA, 1983. Methods for Chemical Analysis of Water and Wastes. Environmental Protection Agency, Government Printing Office, Washington DC. [ Links ]

USEPA, 1995. Superfund program representative sampling guidance. Environmental Protection Agency, Soil, Vol. 1, EPA 540/R-95/141. Washington, DC. [ Links ]

USEPA, 2002. Exemption of Oil and Gas Exploration and Production Wastes from Federal Hazardous Waste Regulations. Environmental Protection Agency. EPA530-K-01-004. Washington, DC. [ Links ]

WAXMAN, M. H. and L. J. M. SMITS, 1968. Electrical conductivities in oil-bearing shaly sands. J. Soc. Petrol. Eng., 8, 107-122. [ Links ]

Received: September 21, 2004; Accepted: June 27, 2005

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License