Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Revista mexicana de física
versão impressa ISSN 0035-001X
Rev. mex. fis. vol.60 no.6 México Nov./Dez. 2014
Investigación
Monte Carlo studies of critical phenomena in mixed spin-3/2 and spin-5/2 Ising model on square lattice
N. De La Espriella Vélezª, J. Madera Yancezb and M. S. Páez Mesac
a Grupo Avanzado de Materiales y Sistemas Complejos - GAMASCO, Departamento de Física, Universidad de Córdoba, Montería, Colombia, e-mail: ndelae52@gmail.com
b Grupo Tesseo-Departamento de Ciencias Básicas, Universidad del Sinú-Elías Bechara Zainúm, Córdoba, Montería, Colombia.
c Departamento de Química, Universidad de Córdoba, Montería, Colombia.
Received 11 June 2014.
Accepted 19 September 2014.
Abstract
We used a Monte Carlo simulation to analize the magnetic behavior of Ising model of mixed spins SiA= ±3/2, ±1/2 and σjB = ±5/2, ±3/2, ±1/2, on a square lattice. Were studied the possible critical phenomena that may emerge in the region around the multiphase point (D/|J1|= 3, J2/|J1| = 1) and the dependence of the phase diagrams with the intensities of the anisotropy field of single ion (D/|J1|) and the ferromagnetic coupling of exchange spin SiA (J2/|J1|). The system displays first order phase transitions in a certain range of the parameters of the Hamiltonian, which depend on D/|J1| and |J2\|J1|. In the plane (D/|J1|,kBT/|J1|), the decrease of |D/|J1||, implies that the critical temperature, Tc, increases and the first order transition temperature, Tt, decreases. In the plane (J2/|J1|, kB T/|J1|), Tc increases with the increasing of J2/|J1|, while that Tt decreases.
Keywords: Ising system; single-ion anisotropy; Monte Carlo simulation; critical temperatures; first-order transitions.
PACS: 68.65.Cd; 77.84.Bw; 71.15.Mb; 71.15.Ap
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. O. Kahn, Molecular Magnetism, VCH, (New York, 1993). [ Links ]
2. B. Deviren, M. Keskin and O. Canko. Physica A 388 (2009) 1835. [ Links ]
3. E. Coronado and D. Gatteshi. J. Mater Chem. 16 (2006) 2513. [ Links ]
4. A. Bobak, F. Abubrig and T. Balcerzak. Phys. Rev. B. 68 (2003) 224405. [ Links ]
5. S. Ohkoshi, A. Yukinori, F. Akira and K.Hashimoto. Phys. Rev. Lett. 82 (1999) 1285. [ Links ]
6. T. kaneyoshi, Y. Nakamura and S. Shin. J. Phys.: Condens. Matter 10 (1998) 7025. [ Links ]
7. C. Mathoniere, C. J. Nuttall, S. G. Carling and P. Day, Inorg. Chem. 251 (1996) 201. [ Links ]
8. J. S. Miller and A. J. Epstein, Agnew. Chem. Int. Ed.Engl. 33 (1994) 385. [ Links ]
9. G. M. Buendía and J. Villarroel, J. Magn. Magn. Mater. 310 (2007) E495. [ Links ]
10. G. M. Buendía and M. A. Novotny, J. Phys.: Condens. Matter 168 (1997) 105. [ Links ]
11. R. A. Yessoufou, S. H. Amoussa and F. Hontinfinde, Cent. Eur. J. Phys. 7 (2009) 555. [ Links ]
12. B. Deviren and M. Keskin, J. Stat. Phys. 140 (2010) 934. [ Links ]
13. L. Néel, Ann. Phys. 3 (1948) 137. [ Links ]
14. C.Q. Xu and S.L.Yan, J. Magn. Magn. Mater. 345 (2013) 261. [ Links ]
15. J. Strecka, Physica A 360 (2006) 379. [ Links ]
16. E. Albayrak and A. Yigit, Phys. Lett. A 353 (2006) 121. [ Links ]
17. E. Albayrak and A. Yigit, Phys. status solidi b 244 (2007) 748. [ Links ]
18. M. Jascur and J. Strecka, Condensed Matter Physics 8 (1998) 869. [ Links ]
19. C. Ekiz and M. Keskin, Physica A 317 (2003) 517. [ Links ]
20. C. Ekiz, Physica A 347 (2005) 353. [ Links ]
21. T. kaneyoshi, Physica A 286 (2000) 518. [ Links ]
22. Q. Zhang, G. Wei and Y. Gu, Phys. status solidi b 242 (2005) 924. [ Links ]
23. J. Strecka and J. Cisárova, Physica A 392 (2013) 5633. [ Links ]
24. N. Benayad and M. Ghliyem, Physica B: 407 (2012) 6. [ Links ]
25 . A. Zaim, M. Kerouad and Y. Belmamoun, Physica B 404 (2009) 2280. [ Links ]
26. K. Htoutou, A. Ainane and M. Saber, J. Magn. Magn. Mater. 269 (2004) 245. [ Links ]
27. T. kaneyoshi, J. Magn. Magn. Mater. 321 (2009) 3430. [ Links ]
28. Y. Lin, F. Wang, X. Zheng, H. Gao and L. Zhang, Journal of Computational Physics 237 (2013) 224. [ Links ]
29. F. Taherkhani et al., Physica A 392 (2013) 5604. [ Links ]
30. J. Strecka and C. Ekiz, Physica A 391 (2012) 4763. [ Links ]
31. J.S da Cruz, M. Godoy and A.S de Arruda, Physica A 392 (2013) 6247. [ Links ]
32. M. Ertas, M. Keskin and B. Deviren, Physica A 391 (2012) 1038. [ Links ]
33. G. Wei, Q. Zhang, Z. Xin and Y. Liang, J. Magn. Magn. Mater. 277 (2004) 1-15. [ Links ]
34. A. Yigit and E. Albayrak, J. Magn. Mag. Mater. 309 (2007) 87. [ Links ]
35. H. K. Mohamad, E.P. Domashevskaya and A.F. Klinskikh, Physica A 388 (2009) 4713. [ Links ]
36. Y. Nakamura, S. Shin and T. Kaneyoshi, Physica B284 (2000) 1479. [ Links ]
37. A. Bobak, T. Balcerzak and F. Abubrig, Physica A. 326 (2003) 151. [ Links ]
38. G. Wei, Q. Zhang and Y. Gu, J. Magn. Magn. Mater. 301 (2006) 245. [ Links ]
39. H. K. Mohamad, J. Magn. Magn. Mater. 323 (2011) 61. [ Links ]
40. N. De La Espriella and G. M. Buendía, Physica A 389 (2010) 2725. [ Links ]
41. N. De La Espriella and G. M. Buendía, J. Phys.: Condens. Matter 23 (2011) 176003. [ Links ]
42. J. W. Tucker, J. Magn. Magn. Mater, 237 (2001) 215. [ Links ]
43. M. E. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics. (Oxford University Press, NewYork, 2006). [ Links ]
44. M. Zukovic and A. Bobak, Physica A 389 (2010) 5402. [ Links ]
45. W. Selke and J. Oitmaa, J. Phys.: Condens. Matter 22 (2010) 076004. [ Links ]