SciELO - Scientific Electronic Library Online

 
vol.42 número2Modelling of asymmetric nebulae. II. Line profilesuvby - β photoelectric photometry of the open cluster α per índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de astronomía y astrofísica

versão impressa ISSN 0185-1101

Resumo

SIMOS, T. E.. Closed newton-cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Rev. mex. astron. astrofis [online]. 2006, vol.42, n.2, pp.167-177. ISSN 0185-1101.

The connection between closed Newton-Cotes, trigonometrically-fitted differential methods and symplectic integrators is investigated in this paper. It is known from the literature that several one step symplectic integrators have been obtained based on symplectic geometry. However, the investigation of multistep symplectic integrators is very poor. Zhu et al. (1996) presented the well known open Newton-Cotes differential methods as multilayer symplectic integrators. Also, Chiou & Wu (1997) investigated the construction of multistep symplectic integrators based on the open Newton-Cotes integration methods. In this paper we investigate the closed Newton-Cotes formulae and we write them as symplectic multilayer structures. After this we construct trigonometrically-fitted symplectic methods which are based on the closed Newton-Cotes formulae. We apply the symplectic schemes in order to solve Hamilton's equations of motion which are linear in position and momentum. We observe that the Hamiltonian energy of the system remains almost constant as integration procceeds.

Palavras-chave : CELESTIAL MECHANICS; METHODS [NUMERICAL].

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons