SciELO - Scientific Electronic Library Online

 
vol.25 número2Efecto del manejo de un Área Natural Protegida en el paisaje del bosque de manglar en la Península de YucatánBioactividad antibacterial y citotóxica de actinobacterias marinas del Parque Nacional Bahía de Loreto, México índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Hidrobiológica

versão impressa ISSN 0188-8897

Hidrobiológica vol.25 no.2 Ciudad de México Mai./Ago. 2015

 

Artículos

Micro-scale distribution of algae in a Pyrenean peat-bog, Spain

Distribución en microescala de las algas de una turbera de los Pirineos, España

Jaume Cambra1 

1 Dept. Biologia Vegetal, Fac. Biologia, Univ. Barcelona, Av. Diagonal, 645, Barcelona 08028, Catalonia, Spain.


Abstract:

We studied the small-scale distribution of algae in the Bassa Nera peat-bog (Pyrenees, NE Spain). A total of 110 algal taxa were identified, some of which are rarely recorded in Spain: Cystodinium cornifax, Euastrum insigne and Desmidium swartzii. Three algal assemblages were distinguished along the studied gradient. Data on the flora and structure of the algal communities, as well on conservation interest are given.

Key words: Algae; Cyanoprokaryota; diversity; peat-bog; Pyrenees

Resumen:

Se estudió la distribución de las algas a lo largo de un microgradiente en una turbera de los Pirineos. En total se identificaron 110 taxones, algunos de los cuales se encontran raramente en España como Cystodinium cornifax, Euastrum insigne y Desmidium swartzii. Se diferenciaron tres comunidades a lo largo del gradiente. Datos sobre la flora, estructura de la comunidad y estado de conservación de la comunidad son aportados.

Palabras clave: Algae; Cyanoprokaryota; diversidad; gradiente; turbera

Introduction

Peat-bogs are ecosystems with a high degree of organization, which leads to spatial heterogeneity and characteristic structures consisting of water pools alternating with hummocks of Sphagnum (Margalef). The nutrient input to these ecosystems is limited and consists essentially of minerals dissolved in rainwater. In general, peat-bogs are characterized by low primary production, but have considerable accumulation of organic matter. Nevertheless, this accumulation of elements is not passive, because the considerable circulation and redistribution of water in peat-bogs usually create diverse micro-gradients.

Peat-bogs are highly suitable habitats for algal flora and assemblages (Bunt, 1954; Ettl, 1968, 1970; Hickman & Vitt, 1973; Kitner et al., 2004; Neustupa et al., 2009; Nováková & Poulíčková, 2004; Skuja, 1948, 1956, 1964; Šťastný, 2009). These studies focused on flora and ecological gradients, too (Poulíčková et al., 2003).

Various aspects of the aquatic systems in the Pyrenees mountains have been tackled, mainly by studies of lakes (Bartumeus et al., 2006; Catalán, 1987; Catalán et al., 1993, 2006; Felip et al., 1995, 1999; Gacia et al., 1994; Pla, 1999, 2001; Sanz et al., 2002; Vilaseca, 1978), but also of springs and rivers (Sabater & Roca, 1990, 1992).

In addition to lakes and rivers, Sphagnum peat-bogs form another widespread Pyrenean freshwater ecosystem. Interest in Sphagnum vegetation is readily explained by the fact that this group of mosses is the most ecologically dominant and economically important worldwide (Andrus, 1986).

In the Spanish Pyrenees, Sphagnum peat-bogs are usually restricted to, lake shores or wet soils situated between 1,800 and 2,200 m a.s.l. (Casas et al., 1994). These peat-bogs cover only small areas. In general, they are ecologically important and are sometimes considered vulnerable ecosystems. This vulnerability is especially relevant in the Pyrenees because there are few bogs and these are exposed to persistent negative influences that can severely disturb or even destroy them (e.g. drought, tourist activities, draining, overgrazing by cows and sheep).

Several studies have examined the algal flora of Pyrenean peat-bogs (Allorge & Manguin, 1941; Cambra, 1998, 2010; Cambra & Roura, 1995; Cambra & Hindák, 1998; Carter, 1970; González-Guerrero, 1927; Massanell, 1966; Margalef, 1946, 1948, 1952, 1956). However, additional data on the biodiversity of these ecosystems are still required. Sphagnum peat-bogs host a wide variety of algae, which usually form highly diverse populations. Sphagnum mosses reduce the pH of a given site (Glime et al., 1982) and may alter its environmental variables (Poulíčková et al., 2004). This capacity explains why species distribution differs along environmental gradients, e.g. from wet to dry Sphagnum (Andrus, 1986). However, little attention has been paid to the distribution of Sphagnum in peat-bogs in the Pyrenees. Here, we studied algal communities along an ecological gradient in a peat-bog in the Bassa Nera lake.

Materials and Methods

The study was carried out (summer 2010) at the Bassa Nera lake, located in the Aigüestortes National Park, NW Catalan Pyrenees (Fig. 1). This water body can be considered a relict lake with extended Sphagnum vegetation. The lake is located 1,890 m a.s.l., below the Gran Tuc de Colomers mountain (GPS 42º 38' N, 0º 55' E). The substrate is schist, the lake has an average depth of almost 4 m and its water is dark brown (Bassa Nera means 'Black Pond'). The catchment covers approximately 37 ha. The lake is oval (102 x 64 m), with a surface area of just over 4,500 m2. A flat peat-bog in the littoral zone holds a massive layer of Sphagnum that has a thickness of 4 m and covers almost 7,000 m2.

Figure 1 View of the Bassa Nera lake and Sphagnum peat-bog around. 

To study how the composition of algal assemblages changes over gradients, three parallel, linear transects were done from the open water into the Sphagnum peat-bog (Fig. 2). Each transect was 10 m long. Algal samples were collected every 2 m along each transect. A total of 12 samples were collected (4 samples per transect) from the lake shore of the Sphagnum zone (T1, T2, T3), from the dry-Sphagnum "hummock" zone (T4, T5, T6) and from the Sphagnum peat-bog zone surrounding the lake (T7 to T12). All samples were collected by squeezing a similar biomass of Sphagnum heads. Samples were then preserved in the field with formaldehyde to a final concentration of 4%. In addition, measurements for water temperature, pH (CRISON-pH), electrical conductivity (CRISON-Conductivimeter) and water content (% moisture out of Sphagum mass) were taken along the transects.

Figure 2 Way and sites where the algal samples were collected along the transect in Bassa Nera Lake, Spain. 

Algae were studied under an OLYMPUS BX-51 microscope. Each sample was homogenized before being pipetted onto previously prepared slide mounts. Diatoms were cleaned following Tomàs (1988) and mounted with naphrax. For taxonomic identification, several monographs were used Anagnostidis & Komárek, 1988; Bourrelly, 1968, 1970, 1972; Desikachary, 1959; Gonzalves, 1981; Komárek & Anagnostidis, 1990, 2000, 2005; Komárek & Fott, 1983; Krammer, 1997, 2002, 2003; Krammer & Lange-Bertalot, 1985, 1986, 1988, 1991a, 1991b; Lange-Bertalot 1993, 1996, 1999a, 1999b, 2001, 2002, 2003, 2004; Krieger, 1937; Lange-Bertalot & Krammer, 1989; Lenzenweger, 1996, 1997, 1999, 2003; Mrozińska, 1985; Popovský & Pfiester, 1990; Printz, 1964; Starmach, 1966, 1972).

Cells were counted in random microscopic fields until a total of 300-400 valves/cells were reached. The relative abundance of each taxon was then calculated. From these data, we calculated the Shannon & Weaver's diversity index (H') for each sample. In addition, a Canonical Correspondence Analysis (CCA) was performed with the PAST statistical package. This statistical analysis was done to identify algal assemblages along the gradient, as well as to check the relationship between certain physico-chemical parameters and the species.

Results

The water temperature of the lake ranged between 21.3 and 27.4 ºC, while the water temperatures in the Sphagnum peat-bog were narrower, ranging between 26 and 27.4 ºC (Table 1). The pH of the lake was between 3.7 and 5.62, while in the Sphagnum peat-bog it was lower, between 3.7 and 4.02. The conductivity values in the water lake were 50-121 μS/cm, while in the Sphagnum peat-bog they were 67.2-121 μS/cm.

Table 1 Data of water temperature (ºC), pH, Conductivity (mS/cm), Shannon diversity (H') and water contents along the Bassa Nera transect. 

A total of 110 algal taxa were identified (Table 2), of which desmids (37.6%) and diatoms (33%) were the dominant groups. The algal flora in the Bassa Nera lake had ubiquitous algal taxa, e.g. Achnanthidium minutissimum (Kützing) Czarnecki, Cocconeis placentula Ehrenberg or Pinnularia viridis (Nitzsch.) Ehrenberg. We also observed numerous species which are considered acidophilous, e.g. Chroococcus turgidus (Kützing) Nägeli, Cosmarium rectangulare Grun. (Fig. 3F), Desmidium swartzii Agardh ex Ralfs (Fig. 3B), Euastrum insigne Hassall ex Ralfs, E. pulchellum Brébisson. (Fig. 3C), Netrium digitus (Ehrenberg ex Ralfs) Itzigs. & Rothe, Oocystis solitaria Wittr., Penium polymorphum (Perty) Perty, Xanthidium armatum (Brébisson) Rabenh. ex Ralfs (Fig. 3E) and Staurastrum striolatum (Nägeli) Arch. (Fig. 3D). Several species are of particular interest, as they have rarely been recorded in Spain, such as Cystodinium cornifax (Schilling Klebs), Euastrum crassum Kützing, Euastrum insigne Hassall ex Ralfs (Fig. 3A), Euglena mutabilis Schmitz, Gymnodinium fuscum (Ehrenberg) Stein, Monomastix pyrenigera Skuja, Sphaerocystis stellata Her. and Woloszynskia neglecta (Schilling) Thompson.

Table 2: List of algae and cyanoprokaryota taxa found in the Bassa Nera Lake at the Pyrenean peat-bog, Spain. 

Figures 3a-f Desmids of Bassa Nera at spanihs Pyrenees. a) Euastrum insigne Hassall ex Ralfs (Segment = 20 mm); b) Desmidium swartzii Agardh Ex Ralfs (Segment = 10 mm); c) Euastrum insulare (Wittr.) Roy (segment = 10 mm); d) Staurastrum striolatum (Nägeli) Arch. (Segment = 10 mm); e) Xanthidium armatum (Brébisson) Rabenh. ex Ralfs (Segment = 50 mm); f) Cosmarium rectangulare Grun. (Segment = 10 mm). 

Lake vegetation were, dominated by Potamogeton alpinus, Myriophyllum alterniflorum, Utricularia sp. and Equisetum fluviatile. The vegetation covered 3,900 m2, which accounts for 85% of the lake's surface. The presence of other species on the Sphagnum peat-bog was also notable (e.g. Drosera rotundifolia, Drosera anglica, Eriophorum sp., Menyanthes trifoliata, Parnassia palustris and Potentilla palustris).

The first two axes in the results from the CCA (Fig. 4) explained 83.93% of the data variability. The first CCA axis had more weight and we considered that it expresses a combined pH and moisture gradient (54.47% of the variability). The pH was lower at T4, T5, T6, T7-T12 and higher at T1, T2 and T3. For the second CCA axis, conductivity had more weight (29.46% of variability). Points T4, T5 and T6 had greater conductivity. Moreover, these sampling points were aerophytic environments. In contrast, points T7-T12 corresponded to the transition from an aquatic to a terrestrial environment and the largest expansion of Sphagnum biomass.

Figure 4 Correspondence Canonical Analysis (CCA) of the studied samples along the transect in Bassa Nera peat-bog at spanish Pyrenees. 

Three groups of algal communities were clearly differentiated along the gradient. Nevertheless, in spite of the spatial segregation of three environments in the peat-bog, some taxa were distributed throughout the whole transect, tolerating the small variations in pH, conductivity and temperature, e.g. Frustulia crassinervia (Ehrenberg) Lange-Bertalot & Krammer, Navicula subtilissima Cleve and Tabellaria flocculosa (Roth) Kützing.

Group I: The lake shore Sphagnum zone (T1, T2, T3) had relatively acidic water and the algal assemblage was dominated mainly by Encyonema minutum (Hilse) Mann, Pinnularia maior (Kützing) Rabenh., Closterium costatum Corda ex Ralfs, Cosmarium conspersum Ralfs and Actinotaenium turgidum (Brébisson ex Ralfs) Teiling. However, the quantitative data showed that, in terms of relative abundance, diatoms and flagellated dinophytes (especially Woloszynskia neglecta (Schilling) Thom.) were the dominant taxa in this zone. The species included in Group I corresponded to a mixture of taxa, a characteristic of peat-bogs, together with representatives of phytoplankton dystrophic lakes.

Group II: The dry Sphagnum "hummock" zone, with less water. This environment had subaerial conditions, which was the main ecological factor. In general, acidophilous taxa and aerophilous species were dominant, consisting mainly of Eucapsis alpina Clements et Schantz, Oocystis solitaria Wittr., Gomphonema gracile Ehrenberg, Euastrum insulare (Wittrock) Roy, Cylindrocystis brebissonii (Ralfs) de Bary, Nostoc kihlmani Lemmermann and Euglena mutabilis Schmitz, while the other algal groups were quantitatively irrelevant.

Group III: The Sphagnum peat-bog zone surrounding the lake (T6, T7, T8, T9, T10, T11, T12) had more acidic water and higher water temperature. The Sphagnum peat-bog was dominated by the diatoms Cymatopleura elliptica (Brébisson) Smith, Diatoma mesodon (Ehrenberg) Kützing, Epithemia sorex Kützing, Fragilaria brevistriata Grun., Sellaphora pupula (Kützing) Mereschkovsky, Pinnularia microstauron (Ehrenberg) Cleve and by other algae, such as Cylindrospermum stagnale (Kützing) ex Bornet & Flahault, Hapalosiphon fontinale (Agardh) Bornet et Flahault, Euastrum insigne Hassall ex Ralfs, Closterium intermedium Ralfs and Actinotaenium cucurbita (Brébisson) Teil. These algal groups were quantitatively and qualitatively dominant, but in this case the assemblage was formed by sphagnophilous species. Another relevant aspect was the increase (quantitatively and in species richness) in desmid taxa along the transect, reaching their highest relative abundance in this zone.

Species richness and diversity increased towards the water of the lake (Fig. 5). The diversity index (H') was between 1.71 and 2.83 along the transect. The lakeshore Sphagnum zone (T1, T2, T3) had higher diversity (H'=2.37-2.83 bits) than other points of the transect. In contrast, samples T4 to T12 showed slightly lower values (H'= 1.71-2.1 bits).

Figure 5 Diversity index (H') ans species richness (Taxa_S) variation along the transect in Bassa Nera peat-bog (Spain). 

Discussion

Peat-bog systems are characterized by low nutrient concentrations and substantial amounts of organic matter. In general, peat-bog algal assemblages consist of a mixture of acidophilous and sphagnophilous taxa, which are widespread along micro-gradients in these habitats (Cambra & Hindák, 1998; Borics et al.,1998; Kol, 1970).

The Bassa Nera lake is sheltered from the wind by terrestrial vegetation (mainly Pinus uncinata) and hydrophyte cover, thus reducing significant water turbulence. In these undisturbed lentic environments, organisms that do not show effective movement sink to the sediments (Borics et al., 2003). This might explain why the dominant algae in the Sphagnum zone of the lakeshore were flagellated dinophytes like Woloszynskia neglecta while Hemidinium nasutum Stein or Gymnodinium fuscum (Ehrenberg) Stein were less abundant. Moreover, periphytic algae are relatively abundant in such habitats. In the Bassa Nera lake these algae were represented by Achnanthidium minutissimum (Kützing) Czarnecki, Encyonema gracile Ehrenberg, Gomphonema gracile Ehrenberg and Oedogonium sp.

As a result of the dryness of the Sphagnum "hummock" zone (Group II), the establishment of many desmid species was hindered, while the presence of diatoms was also limited because of the extremely low pH (Poulíčková et al., 2004; Lederer,1999). This pattern was reported in peat-bogs in Hungary by Uherkovich (1984), who concluded that desmids are more sensitive to drying out than diatoms. Consequently, flora impoverishment starts with the disappearance of desmids. This is precisely what we observed for desmid species richness in the dry Sphagnum "hummock" zone. However, the relative abundance of desmids in Group II was higher than in the lakeshore Sphagnum zone. Thus, although Group II contained only a few desmid species, they were sometimes relatively abundant. On the basis of this observation, we believe that desmids, such as Cylindrocystis brebissonii (Menegh. ex Ralfs) de Bary, Penium polymorphum (Perty) Perty and Euastrum insulare (Wittrock) Roy, are relatively well adapted to dry peat-bog habitats. Our results are consistent with data reported by Poulíčková et al. (2004) and suggest that the poor algal diversity of Group II in Sphagnum hummocks is attributable to dry and acidic conditions.

The Sphagnum peat-bog zone (Group III) was inhabited by typical bog algae, namely mainly desmids and diatoms. The zone's samples show affinities with Micrasterieto jenneri-Euastretum insignis, described by Margalef (1955) in Galicia (NW Spain). This finding greatly extends the known distribution area in Spain of this community, which is probably widespread in acidic peat-bogs of northern Spain, reaching the sub-alpine zone, as occurs in the Pyrenees. However, during our visits to more than one hundred peat-bogs in this mountain range over several years, we did not detect this desmid community in any lake. Its presence in the Bassa Nera lake is highly relevant for the Aigüestortes National Park and allows it to be classified as a relict peat-lake.

With regard to the diversity index (H') of these communities, the greatest diversity was observed in Group I, thereby indicating that this algal community is diverse. However, in this case, this environment hosts not only algae that live among Sphagnum thalli, but also diverse forms of phytoplankton, some of which are possibly from the periphyton, which coexist with sphagnophilous species.

When dealing with small-scale gradients like the one addressed in this study, the spatial heterogeneity of algae must be examined to check for small changes over very short distances. Our results confirm those reported by Nováková (2002), in which the spatial heterogeneity of algal communities of particular microbiotopes varied more than between various localities (peat-bogs). Moreover, we observed that species dominance increased with decreasing moisture, results that are consistent with the findings reported by Poulíčková et al. (2003) and Krenková (2001).

Our results confirm the high algal biodiversity in Sphagnum peat-bogs (even in southern European countries). The recent decrease in species diversity in European peat-bogs reflects the long dry period that started in the early eighties (Borics et al., 2003). On the basis of these considerations and our results, we conclude that peat-bog algal assemblages could serve as indicators of anthropogenic disturbances at local levels, as well as climate changes on a global scale.

Acknowledgements

The authors thank the Aigüestortes National Park and the following people who helped in the field sampling work: J. Llistosella, M.T. Roura, M. López, A. Salvat, S. March, J. Sánchez†, I. Nadal, J. Gomà, M. Banacolocha and C. Balaguer.

References

Allorge, P. & E. Manguin. 1941. Algues d'eau douce des Pyrénées basques. Bulletin Société Botanique de France 88: 159-191. [ Links ]

Anagnostidis, K. & J. Komárek. 1988. Modern approach to the classification system of cyanophytes Oscillatoriales. Archiv für Hydrobiologie 50-53: 327-472. [ Links ]

Anagnostidis, K. & J. Komárek. 1990. Modern approach to the classification system of cyanophytes Stigonematales. Arch. Hydrobiol. 59: 1-73. [ Links ]

Andrus, R. E. 1986. Some aspects of Sphagnum ecology. Canadian Journal of Botany. 64: 416-426 [ Links ]

Borics, G., J. Padisák, I. Grigorszky, I. Oldal, I. Péterfi. & L. Momeu. 1998. Green algal flora of the acidic bog-lake, Balátá-tó SW HungaryBiologia. Bratislava 53: 457-465. [ Links ]

Borics, G., B. T´hmérész , I. Grigorszky, J. Padisák, G. Várbíró. & S. Szabo. 2003. Algal assamblage types of bog-lakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia 502: 145-155. [ Links ]

Bourrelly, P. 1968. Les algues d'eau douce. Algues jaunes et brunes. N. Boubée & Cie., Paris. 438 p. [ Links ]

Bourrelly, P. 1970. Les algues d'eau douce. Initiation à la systématique Tome 3: les algues bleues et rouges. Les Eugléniens, Peridiens et Cryptomonadines. N. Boubée & Cie., Paris. 252 p. [ Links ]

Bourrelly, P. 1972. Les algues d'eau douce. Initiation à la systématique. Tome 1: les algues vertes. N. Boubée & Cie., Paris. 517 p. [ Links ]

Bunt, J. S. 1954. A comparative account of the terrestrial diatoms of Macquarie Island. Proceedings of the Linnean Society of London 79: 34-57. [ Links ]

Cambra, J. 1998. Observacions sobre la biodiversitat de desmidiàcides Cloròfits a Catalunya. Acta botánica barcinonensia 45: 115-132. [ Links ]

Cambra, J. 2010. Chrysophytes from some lakes and peat-bogs in the eastern Pyrenees, Catalonia Spain. Biologia 65: 577-586 [ Links ]

Cambra, J. & F. Hindák. 1998. Green algae from mountain peat-bogs in the Eastern Pyrenees Catalonia, Spain. Biologia 34: 467-480. [ Links ]

Cambra, J. & M. T. Roura. 1995. Contribució al coneixement de les desmidiàcies Chlorophyta de les torberes dels Pirineus, pp. 91-107. : Aniz, M. (Ed.), III Jornades de Recerca del Parc Nacional d'Aigüestortes, Boí, Spain. [ Links ]

Carter, J. R. 1970. Diatoms from Andorra. Nova Hedwigia 31: 605-652. [ Links ]

Casas, C., M. Brugués & R. M. Cros. 1994. Els esfagnes de les mulleres del Parc Nacional d'Aigüestortes i estany de Sant Maurici. : Aniz, M. Ed.: III Jornades de Recerca del Parc Nacional d'Aigüestortes, Boí, Spain. 81-90 p. [ Links ]

Catalán, J. 1987. Limnologia de l'estany Redó Pirineu central. Doctoral Thesis, Univ. Barcelona, Barcelona. 229 pp. [ Links ]

Catalán, J., E. Ballesteros, E. Gacia, A. Palau & Ll. Camarero. 1993. Chemical composition of disturbed and undisturbed high-mountain lakes in the Pyrenees: a reference for acidified sites. Water research 271: 133-141. [ Links ]

Catalán, J., L. Camarero, M. Felip, S. Pla, M. Ventura, T. Buchaca. F. Bartumeus, G. de Mendoza, A. Miró, E. O. Casamayor, J. M. Medina-Sánchez, M. Bacardi, M. Altuna, M. Bartrons & D. Díaz de Quijano. 2006. High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 251-2: 551-584. [ Links ]

Desikachary, T. V. 1959: Cyanophyta. ICAR, N. Delhi. India. 685 p. [ Links ]

Ettl, H. 1968. Ein Beitrag zur Kenntnis der Algenflora Tirols. Berichte des naturwissenschaftlich-medizinischen Vereins in Innsbruck 56: 177-354. [ Links ]

Ettl, H. 1970. Ein Beitrag zur Kenntnis der Algenflora Tirols II. Berichte des naturwissenschaftlich-medizinischen Vereins in Innsbruck 58: 89-124. [ Links ]

Felip, M., B. Sattler, R. Psenner. & J. Catalán. 1995. Highly active microbial communities in the ice and snow cover of high mountain lakes. Applied & Environmental Microbiology 61: 2394-2401. [ Links ]

Felip, M., L. Camarero. & J. Catalán. 1999. Temporal changes of microbial assemblages in the ice and snow cover of a high mountain lake. Limnology Oceanography 44: 973-987. [ Links ]

Gacía, E., E. Ballesteros, Ll. Camarero, O. Delgado, A. Palau, J. Riera & J. Catalán. 1994. Macrophytes from the Easter Pyrenean lakes: composition and ordination in relation to environmental factors. Freshwater Biology: 73-81. [ Links ]

Glime, J. M, R. G. Wetzel. & B. J. Kennedy. 1982. The effects of bryophytes on succession from alkaline marsh to sphagnum bog. American Midely Naturalist 108: 209-223. [ Links ]

González-Guerrero, P. 1927. Contribución al conocimiento ficológico del Pirineo español. Boletín Real Sociedad Española Historia Natural 27: 434-346. [ Links ]

Gonzalves, E. A. 1981. Oedogoniales. I.C.A.R., New Delhi. 757 p. [ Links ]

Hickman, M. & D. H. Vitt. 1973. The aerial epiphytic diatom flora of moss species from subantarctic Campbell Island. Nova Hedwigia 24: 443-458. [ Links ]

Kitner, M., A. Poulnicková, R. Novotny. & M. Hájek. 2004. Desmids Zygnematophyceae of the spring fens of a part of West Carpathians. Czech Phycology 4: 43-61. [ Links ]

Kol, E. 1970. Algological and hydrobiological investigations of the bog of Grajka-streamlet, Vas-county. Savaria 4: 9-29. [ Links ]

Komárek, J. & B. Fott. 1983. Chlorophyceae Grünalgen, Ordnung Chlorococcales. In: Huber-Pestalozzi, G. (Ed.), Das Phytoplankton des Süsswassers, Die Binnengewässer 16, 7/1, Schweizerbart Verlag, Stuttgart. 1044 p. [ Links ]

Komárek, J. & K. Anagnostidis. 2000. Cyanoprokaryota I. Chroococcales. pp.548 In: Chlorophyta VI Oedogoniophyceae: Oedogoniales. In: Ettl, H., Gärtner, G., Heying, H. & Mollenhauer, D. (Eds.). Süsswasserflora von Mitteleuropa vol. 19/1. G. Fischer Verlag, Stuttgart. 624 p. [ Links ]

Komárek, J. & K. Anagnostidis. 2005. Cyanoprokaryota II. Oscillatoriales. In: Chlorophyta VI Oedogoniophyceae: Oedogoniales. pp. 624 In: Büdel, B., Gärtner, G., Krienitz, L. & Schagerl, M. (eds.), Süsswasserflora von Mitteleuropa vol. 19/2. G. Fischer Verlag, Stuttgart. 759 p. [ Links ]

Krammer, K. 1997. Die cymbelloiden Diatomeen. Bibliotheca Diatomologica. Band 36, J. Cramer, Berlin. 382 p. [ Links ]

Krammer, K. 2002. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Cymbella. In: Lange-Bertalot, H. (Ed.). Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats 3. A. R. G. Gantner Verlag K. G., Ruggell. 584 p. [ Links ]

Krammer, K. 2003. Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella Supplements to cymbelloid taxa. In: Lange-Bertalot, H. (Ed.). Diatoms of the European Inland Waters and Comparable Habitats Elsewhere. Vol. 4, A. R. G. Gantner Verlag K. G., Ruggell. 530 p. [ Links ]

Krammer, K. & H. Lage-Bertalot. 1985. Naviculaceae. Bibliotheca Diatomologica 9: 1-389. [ Links ]

Krammer K. & H. Lange-Bertalot. 1986: Bacillariophyceae 1. Naviculaceae. In: Ettl, H., J. Gerloff, H. Heynig & Mollenhauer, D. (Eds.). Süβwasserflora von Mitteleuropa, Volume 2/1. G. Fischer Verlag, Jena. 876 p. [ Links ]

Krammer K. & H. Lange-Bertalot. 1988 Bacillariophyceae 2. Bacillariaceae, Epithemiaceae, Surirellaceae. In: H. Ettl, J. Gerloff, H. Heynig & Mollenhauer, D. (Eds.), Süβwasserflora von Mitteleuropa, Volume 2/2. G. Fischer Verlag, Jena. 596 p. [ Links ]

Krammer K. & H. Lange-Bertalot. 1991a. Bacillariophyceae 3. Centrales, Fragilariaceae, Eunotiaceae. In: Ettl, H., J. Gerloff, H. Heynig & Mollenhauer, D. (Eds.), Süβwasserflora von Mitteleuropa, Volume 2/3. G. Fischer Verlag, Jena. 599 p. [ Links ]

Krammer K. & H. Lange-Bertalot. 1991b. Bacillariophyceae . 4. Achnanthaceae. Kritische Ergänzungen zu Navicula Lineolatae und Gomphonema. In: Ettl, H., J. Gerloff, H. Heynig & Mollenhauer, D. (Eds.). Süβwasserflora von Mitteleuropa, Volume 2/4. G. Fischer Verlag, Jena. 437 p. [ Links ]

Krenková, P. 2001. Distribuce řas v mechorostech na vybraných svahoých prameništích moravsko-slovenského pomezí Diplomová práce PřF UP Olomouc, katedra ekologie, 52 p. [ Links ]

Krieger, W. 1937. Conjugata. Die Desmidiacen. In: Kolwitz, K. (Ed.). Krytogamenflora von Deutschland, Österreich und der Schweiz. Ak.Verlagsgesellschaft, Leipzig. 449 p. [ Links ]

Lange-Bertalot, H. 1993. 85 Neue Taxa und über 100 weitere neu definierte Taxa ergänzend zur Sübwasserflora von Mitteleuropa Vol. 2/1-4. Bibliotheca Diatomologica 27: 1-454. [ Links ]

Lange-Bertalot, H. 1996. Iconographia Diatomologica. Annotated Diatom Micrographs. Vol. 2. Koeltz Scientific Books, Frankfurt. 389 p. [ Links ]

Lange-Bertalot, H. 1999a. Iconographia Diatomologica. Annotated Diatom Micrographs. Vol. 6. Koeltz Scientific Books, Frankfurt. 304 p. [ Links ]

Lange-Bertalot, H. 1999b. Iconographia Diatomologica. Annotated Diatom Micrographs. Vol. 8. Koeltz Scientific Books, Frankfurt. 203 p. [ Links ]

Lange-Bertalot, H. 2001. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia. Koeltz Scientific Books, Frankfurt. 526 p. [ Links ]

Lange-Bertalot, H. 2002. Iconographia Diatomologica. Annotated Diatom Micrographs. Vol. 11. A.R.G. Gantner Verlag K.G., Berlin. 286 p. [ Links ]

Lange-Bertalot, H. 2003. Iconographia Diatomologica. Annotated Diatom Micrographs. Vol. 12. Biogeography-Ecology-Taxonomy. A.R.G. Gantner Verlag K.G., Berlin. 438 p. [ Links ]

Lange-Bertalot, H. 2004. Iconographia Diatomologica. Annotated Diatom Micrographs13Ecology-Hydrogeoloy-Taxonomy. A.R.G. Gantner Verlag K.G., Berlin. 417 p. [ Links ]

Lange-Bertalot H. & Krammer, K. 1989. Achnanthes eine Monographie der Gattung. Bibliotheca Diatomologica 18: 1-393. [ Links ]

Lederer, F. 1999. Algal flora of the Červené blato peat bog Třeboň Basin, Czech Republic. Preslia 70: 303-311. [ Links ]

Lenzenweger, R. 1996 Desmidiaceenflora von Österreich, Teil 1. Bibliotheca Phycologica 101: 1-162. [ Links ]

Lenzenweger, R. 1997. Die Desmidiaceenflora von Österreich. Teil 2. Bibliotheca Phycologica 102: 1-216. [ Links ]

Lenzenweger, R. 1999. Desmidiaceenflora von Österreich, Teil 3. Bibliotheca Phycologica 104: 1-218. [ Links ]

Lenzenweger, R. 2003. Desmidiaceenflora von Österreich, Teil 4. Bibliotheca Phycologica 111: 1-87. [ Links ]

Margalef, R. 1946. Contribución al conocimiento hidrobiológico del país vasco-navarro Sierra de Aralar. In: Aportación al estudio de la flora y fauna vasco-navarrasInstituto de Estudios Pirenaicos, CSICZaragoza. Pp. 7-44. [ Links ]

Margalef, R. 1948. Flora, fauna y comunidades bióticas de las aguas del Pirineo de la Cerdaña. Instituto de Estudios Pirenaicos. CSIC. Zaragoza. 226 p. [ Links ]

Margalef, R. 1952. La vida en las aguas dulces de Andorra. Actas I Congreso Internacional de Estudios Pirenaicos, Jaca.107 p. [ Links ]

Margalef, R. 1955. Comunidades bióticas de las aguas dulces del noroeste de España. Publ. Publicaciones del Instituto de Biología Aplicada 21: 5-85. [ Links ]

Margalef, R. 1956: Estudios hidrobiológicos en los valles de Bohí Pirineo de Lérida. In: Actas II Congreso Internacional de Estudios Pirenaicos, Jaca. pp. 87-108 [ Links ]

Margalef, R. 1983. Limnología. Omega, Barcelona. 1010 p. [ Links ]

Massanell, M. A. 1966. Algues aquàtiques del Parc d'Aigüestortes. -Institut Estudis Catalans 31: 1-44. [ Links ]

Mrozińska, T. 1985: Chlorophyta VI Oedogoniophyceae: Oedogoniales. In: Ettl, H., Gerloff, J., Heying, H. & Mollenhauer, D. (Eds.), Süsswasserflora von Mitteleuropa vol. 14. G. Fischer Verlag, Stuttgart. 624 p. [ Links ]

Neustupa, J., K. Černá. & J. ŠtAstný. 2009. Diversity and morphological disparity of desmid assemblages in Central European peatlands. Hydrobiologia 630: 243-256 [ Links ]

Nováková, S. 2002. Algal flora of subalpine peat bog pools in the Krkonoše Mts. Preslia 74: 45-56. [ Links ]

Nováková, J. & Poulíčková, A. 2004. Moss diatom Bacillariophyceae flora of the Nature Reserve Adrspašsko-Teplické Rocks, Czech RepublicCzech Phycology 4: 75-86. [ Links ]

Pla, S. 1999. The chrysophycean cysts from the Pyrenees and their applicability as palaeoenvironmental indicators. Doctoral Thesis, Univ. Barcelona, Barcelona. 277 p. [ Links ]

Pla, S. 2001 Chrysophycean cysts from the Pyrenees. Biblioheca Phycologica 109. J. Cramer, Berlin. 179 p. [ Links ]

Popovský, J. & L. A. Pfiester. 1990Dinophyceae Dinoflagellida. In: Ettl, H., Gerloff, J., Heying, H. & Mollenhauer, D. (Eds.). Süsswasserflora von Mitteleuropa, 6 G. Fischer Verlag. Jena- Stuttgart. 272 p. [ Links ]

Poulíčková, A., J. Nováková. & P. Krásová. 2003. Vertical distribution of epiphytic algae on the mosses and their relation to moisture. Czech Phycology 3: 119-124. [ Links ]

Poulíčková, A., P. Hájková, P. Krenková. & M. Hájek. 2004. Distribution of diatoms and bryophytes on linear transects through spring fens. Nova Hedwigia 78: 411-424. [ Links ]

Printz, H. 1964. Die Chaetophoralen der Binnengewässer. Hydrobiology 24: 1-376. [ Links ]

Sabater, S. & J. R. Roca. 1990. Some factors affecting distribution of diatom assemblages in Pyrenean springs. Freshwater Biology 24: 493-507. [ Links ]

Sabater, S. & J. R. Roca. 1992 Ecological and biogeographical aspects of diatom distribution in Pyrenean springs. British Phycological Journal 27: 203-213. [ Links ]

Sanz, O., J. Cambra, M. Menéndez, E. Velasco. & H. Szymanska. 2002. Epiphytic macroalgae in high mountain lakes Pyrenees, Spain. pp. 161-167, : Aniz, M. (Ed.). IV Jornades de Recerca del Parc Nacional d'Aigüestortes, Barruera. [ Links ]

Skuja, H. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symb. Bot. Upsaliensis 9: 5-399. [ Links ]

Skuja, H. 1956. Taxonomische und biologische Studien über das Phytoplankton schwedischer BinnengewässerNova Acta Regiae Societatis Scientiarum Upsaliensi 16: 1-404. [ Links ]

Skuja, H. 1964. Grundzüge der Algenflora und Algenvegetation der Fjeldgegenden um Abisko in Schwedisch Lappland. Nova Acta Regiae Societatis Scientiarum Upsaliensis 18: 1-465. [ Links ]

Starmach, K. 1966Cyanophyta, Glaucophyta. Flora słodkowodna Polski2. Polska Akad. Nauk, Warszawa & Krakow. 808 p. [ Links ]

Starmach, K. 1972. Chlorophyta III. Zielenice nitkowate. Flora słodkowodna Polski10. Polska Akad. Nauk, Warszawa & Krakow. 750 p. [ Links ]

Stastny, J. 2009. The desmids of the Peat-bog Nature Reserve North Bohemia, Czech Republic and a small neighbouring bog: species composition and ecological condition of both sites. Fottea 91: 135-148. [ Links ]

Tomàs, X. 1988. Diatomeas de las aguas epicontinentals saladas del litoral mediterráneo de la península Ibérica. Ph. Doctoral Thesis. Univ. Barcelona, Spain. 687 p. [ Links ]

Uherkovich, G. 1984 Microvegetation of the bog-lake Vad-tó. Folia Musei Historico-naturalis Bakonyiensis 3: 43-56. [ Links ]

Vilaseca, J. M. 1978 Fitoplancton de los lagos pirenaicos. Graduate Thesis, Univ. Barcelona, Barcelona, Spain. 102 p. [ Links ]

Received: March 02, 2014; Accepted: June 12, 2015

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License