SciELO - Scientific Electronic Library Online

 
vol.27 número4Design of an Automatic Tagging Algorithm for the Development of a Non-Literal Language Corpus in SpanishPoSLemma: How Traditional Machine Learning and Linguistics Preprocessing Aid in Machine Generated Text Detection índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Computación y Sistemas

versão On-line ISSN 2007-9737versão impressa ISSN 1405-5546

Resumo

MINUTTI-MARTINEZ, Carlos; ESCALANTE-RAMIREZ, Boris  e  OLVERES-MONTIEL, Jimena. PumaMedNet-CXR: An Explainable Generative Artificial Intelligence for the Analysis and Classification of Chest X-Ray Images. Comp. y Sist. [online]. 2023, vol.27, n.4, pp.909-920.  Epub 17-Maio-2024. ISSN 2007-9737.  https://doi.org/10.13053/cys-27-4-4777.

In this paper, we introduce PumaMedNet-CXR, a generative AI designed for medical image classification, with a specific emphasis on Chest X-ray (CXR) images. The model effectively corrects common defects in CXR images, offers improved explainability, enabling a deeper understanding of its decision-making process. By analyzing its latent space, we can identify and mitigate biases, ensuring a more reliable and transparent model. Notably, PumaMedNet-CXR achieves comparable performance to larger pre-trained models through transfer learning, making it a promising tool for medical image analysis. The model’s highly efficient autoencoder-based architecture, along with its explainability and bias mitigation capabilities, contribute to its significant potential in advancing medical image understanding and analysis.

Palavras-chave : Medical image analysis; autoencoder; explainable artificial intelligence; chest X-Ray.

        · texto em Inglês