SciELO - Scientific Electronic Library Online

 
vol.59 número1Optimization of Extraction Conditions for Flavonoids of Physalis alkekengi var. franchetii Stems by Response Surface Methodology and Inhibition of Acetylcholinesterase Activity índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of the Mexican Chemical Society

versão impressa ISSN 1870-249X

Resumo

AHMADI PEYGHAN, Ali; SOLEYMANABADI, Hamed  e  BAGHERI, Zargham. Hydrogen Release from NH3 in the Presence of BN Graphene: DFT Studies. J. Mex. Chem. Soc [online]. 2015, vol.59, n.1, pp.67-73. ISSN 1870-249X.

Using density functional theory, we investigated the interaction of an NH3 molecule with a pristine and antisite defected BN sheet (g-BN) in terms of energetic, geometric, and electronic properties. The adsorption energy of NH3 on defected g-BN was calculated to be in the range of -0.70 to -2.46 eV, which is considerably more negative than that on the pristine sheet. It was found that the adsorption of NH3 adsorption on the defected sheet may cause the release of an H2 molecule. The electronic properties of the defected BN sheet were significantly changed after the adsorption process so that its HOMO/LUMO energy gap was changed from 3.31 to 3.60-4.97 eV. Moreover, the Fermi level of the defected sheet shifts to higher energies after the interaction, which results in reduced potential barrier of the electron emission for the sheet surface, enhancing the field emission because of the decreased work function.

Palavras-chave : Boron Nitride Nanosheet; Graphene-like; DFT; B3LYP; Ammonia.

        · resumo em Espanhol     · texto em Inglês

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons