SciELO - Scientific Electronic Library Online

 
vol.59 número2Role of Different Transporting Systems in the Secretion of Alkaloids by Hairy Roots of Catharanthus roseus (L) G. DonPhenylboronic Acid/CuSO4 as an Efficient Catalyst for the Synthesis of 1,4-Disubstituted-1,2,3-Triazoles from Terminal Acetylenes and Alkyl Azides índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of the Mexican Chemical Society

versão impressa ISSN 1870-249X

Resumo

GONZALEZ-MENDOZA, Alma Laura  e  CABRERA-LARA, Lourdes I.. Reaction Parameters for Controlled Sonosynthesis of Gold Nanoparticles. J. Mex. Chem. Soc [online]. 2015, vol.59, n.2, pp.119-129. ISSN 1870-249X.

The synthesis of gold nanoparticles by sonochemical technique has been previously performed with excellent results. The synthesis has been carried out in the presence of citric acid, a strong reducing agent, which allows the nucleation and growth of gold nanoparticles, at the same time that controls particle size. In this work, we report the use of sodium tartrate as a mild reducing agent that allows a better understanding of the effect of the reaction parameters during gold nanoparticle synthesis. A conventional sonication bath (37 kHz) was used for the sonochemical synthesis. This work focuses on the reaction temperature effect and the effect of sodium tartrate concentration. It was confirmed that particle size, and particle morphology is dependent of these two reaction parameters. Equally, colloidal stabilization was related to reaction temperature and sodium tartrate concentration. It was also determined that Ostwald ripening takes place during sonochemical reaction under our conditions, allowing us to understand the mechanism that takes place during synthesis. Gold nanoparticles with main particle size of 17 nm were achieved by this method.

Palavras-chave : Gold colloidal suspension; nanoparticles; sonosynthesis; sodium tartrate.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons