SciELO - Scientific Electronic Library Online

 
 número46Diseño Automático de Redes Neuronales Artificiales mediante el uso del Algoritmo de Evolución Diferencial (ED) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Polibits

versão On-line ISSN 1870-9044

Resumo

NAPOLES, Gonzalo; GRAU, Isel  e  BELLO, Rafael. Constricted Particle Swarm Optimization based Algorithm for Global Optimization. Polibits [online]. 2012, n.46, pp.05-11. ISSN 1870-9044.

Particle Swarm Optimization (PSO) is a bioinspired meta-heuristic for solving complex global optimization problems. In standard PSO, the particle swarm frequently gets attracted by suboptimal solutions, causing premature convergence of the algorithm and swarm stagnation. Once the particles have been attracted to a local optimum, they continue the search process within a minuscule region of the solution space, and escaping from this local optimum may be difficult. This paper presents a modified variant of constricted PSO that uses random samples in variable neighborhoods for dispersing the swarm whenever a premature convergence (or stagnation) state is detected, offering an escaping alternative from local optima. The performance of the proposed algorithm is discussed and experimental results show its ability to approximate to the global minimum in each of the nine well-known studied benchmark functions.

Palavras-chave : Particle Swarm Optimization; Local optima; Global Optimization; Premature Convergence; Random Samples; Variable Neighborhoods.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons