SciELO - Scientific Electronic Library Online

 
vol.9 número2Acuíferos transfronterizos en México: análisis normativo hacia una estrategia de manejoValoración económica de servicios ecosistémicos en la cuenca del río Aconcagua, Chile índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Tecnología y ciencias del agua

versão On-line ISSN 2007-2422

Tecnol. cienc. agua vol.9 no.2 Jiutepec Mar./Abr. 2018  Epub 24-Nov-2020

https://doi.org/10.24850/j-tyca-2018-02-02 

Articles

Evaluation of Physicochemical Parameters and Heavy Metals in Water and Surface Sediment in the Ilusiones Lagoon, Tabasco, Mexico

Carmen M. Flores1 

Ebelia Del-Angel2 

Dora M. Frías3 

Ana L. Gómez4 

1Universidad Autónoma de Tlaxcala, Tlaxcala, México, maurilio.flores@gmail.com

2Universidad Juárez Autónoma de Tabasco, Cunduacán, México, ebelia.delangel@ujat.mx

3Universidad Juárez Autónoma de Tabasco, Cunduacán, México, dorita78@hotmail.com

4Universidad Juárez Autónoma de Tabasco, Cunduacán, México, ana.gomez@ujat.mx


Abstract

This work was done in the Ilusiones Lagoon located in Villahermosa, Tabasco. It analyzed some of the physicochemical parameters and the concentrations of heavy metals in surface sediments and water. Water samples and surface sediments (0-10 cm) were randomly separated into three different zones for an exploratory analysis. Water parameters were measured in situ with a multiparametric method to determine pH, temperature, electrical conductivity (EC, dS/m), redox potential (ORP), dissolved oxygen (DO %), cation exchange capacity (CIC C mo(+)l/kg) and total salts (TDS mg/kg). In addition, the chemical oxygen demand (COD mg/L) was determined based on the NMX-AA-030-SCFI-2001 standard and organic matter content (OM). Sediment samples were taken according to the NOM-021-Semarnat-2000 (Semarnat 2001a, 2001b). Digestion of the samples were performed according to EPA 3050B and NOM-147-Semarnat/SSA1-2004 guidelines. The NMX-AA-132-SCFI-2006 standard was used to determine heavy metal concentrations using an atomic absorption spectrophotometer. The values of pH in water ranged between 8.9 and 9.6, which were alkaline and above the limits (6.5 - 9.0). The pH of the sediment ranged from 5.9 (slightly acidic) to 8.4 (slightly alkaline) (NOM-021-Semarnat-2000). In the water, the heavy metals Cd, Ni, Cr, Mn, Zn, Al and Pb were all below the NOM-001-Semarnat-1996. The concentrations of Cd, Ni, Cu, Mn, Zn, Pb and Al in the sediments exceeded the criteria for heavy metals established by Canadian and American standards. We conclude that the lake is polluted by illegal discharges of sewage from nearby houses, hospital waste, and infiltration from other polluted lakes.

Keywords Heavy metal; sediment; pollution water; lagoon of Ilusiones

Resumen

Este trabajo se realizó en la Laguna de las Ilusiones, ubicada en Villahermosa, Tabasco, México. Se analizaron algunos parámetros fisicoquímicos y las concentraciones de metales pesados en agua y sedimentos superficiales. Las muestras de agua y sedimento superficial (0-10 cm) se tomaron al azar en tres zonas diferentes para un análisis exploratorio. Los parámetros del agua se midieron in situ con un equipo multiparamétrico para determinar pH, temperatura, conductividad eléctrica (CE, dS/m), potencial redox (ORP), oxígeno disuelto (DO%), capacidad de intercambio catiónico (CIC Cmol(+)/kg) y sales totales (SDT mg/kg). Además, se determinó la demanda química de oxígeno (DQO mg/l), empleando la norma NMX-AA-030-SCFI-2001 (SCFI, 2001a) y el contenido de materia orgánica (MO). Las muestras de sedimentos fueron tratadas de acuerdo con la norma NOM-021-Semarnat-2000 (Semarnat, 2000), normas EPA 3050B (EPA, 2000) y NOM-147-Semarnat/SSA1-2004. La norma NMX-AA-132-SCFI-2006 se utilizó para determinar las concentraciones de metales pesados, utilizando el espectrofotómetro de absorción atómica. Los valores de pH en agua oscilaron entre 8.9 y 9.6; se encuentran por arriba de los límites (6.5-9.0). En los sedimentos, el pH osciló en valores desde 5.9, moderadamente ácido, hasta 8.4, medianamente alcalino (NOM-021-Semarnat-2000). Los metales pesados determinados en el agua, Cd, Ni, Cr, Mn, Zn, Al y Pb, se encuentran todos por debajo de la NOM-001-Semarnat-1996 (Semarnat, 1996b). La concentración de Cd, Ni, Cr, Mn, Zn, Pb y Al en los sedimentos sobrepasan los criterios de metales pesados establecidos en las normas canadienses y estadounidenses. Se concluye que la laguna está contaminada por descargas ilícitas de aguas negras procedentes de las viviendas cercanas, desechos de hospitales y por la infiltración de otras lagunas contaminadas.

Palabras clave metales pesados; sedimento; contaminación del agua; Laguna de las Ilusiones

Introduction

Industrialization produces effluents that contain toxic compounds such as metals, whose discharges into water bodies are the major source of pollution and various diseases (ATSDR, 2012). The water and the sediments in lakes and lagoons become receivers of various pollutant, which enter the food chains (Theoneste, Gang, Jing, Xu, & Lei, 2013; Lemus, Castañeda, & Chung, 2014). This poses a risk to biota because of bioaccumulation and biomagnification in the organs and tissues of many aquatic and terrestrial species (Sobrino, Cáceres, & Rosas, 2007). Other equally important sources include municipal discharges and agricultural and particle emission. Forty-two percent of the substances discharged into surface water bodies are metals that end up in sediments. Sediments are matrices composed of organic matter in various stages of decomposition and organic and inorganic particulate material of biological and anthropogenic origin (Chen ( White, 2004).

Heavy metals are pollutants that, due to their persistence and long-range transport, easily reach surface water bodies, posing a potential risk to biota. These pollutants can come from various sources such as: oil activities, agriculture, metallurgy, and sugar, as well as urban and sanitary (herbicides and insecticides). The high toxicity of metals bioaccumulate in biota and magnify up the food chain in higher organisms, including humans (Herrera, Rodríguez, Coto, Salgado, & Borbón, 2012).

Rivers receive waste generated by human activities through effluents that introduce hazardous substances, especially metals such as lead, cadmium, chromium, mercury, and manganese, among others. These tend to settle in the sediment, become suspended, or dissolve in the water column (Rodríguez, Ruíz, & Vertiz, 1994). These rivers carry pollutants along their courses, and when they overflow they may be deposited in water bodies such as lakes and springs. The Ilusiones Lagoon in Villahermosa is surrounded by two large rivers (Grijalva and Usumacinta) in an area with high rates of rainfall, which have caused these rivers to flood. Weather conditions also contribute to the potential transfer of pollutants from the atmosphere to the lagoon in particular, and other bodies of water in general (Palma, Cisneros, Moreno, & Rincón, 2007).

Next are some examples that illustrate the extent of metal pollution in the country. Arsenic and lead concentrations in surface sediments in the Zahuapan-Atoyac hydrologic system ranged from 1.3 to 127.7 mg kg-1 and 27.3 to 89.5 mg kg-1, respectively (García-Nieto et al., 2011). Rosales-Hoz and Carranza-Edwards (1998) detected levels of metals in sediment in the Coatzacoalcos River ranging from 21.2 - 53.5 mg kg-1 for total lead, 2.1 - 2.7 mg kg-1 for total cadmium and 21.6 - 152.7 mg kg-1 for total chromium. González-Mille et al. (2010) found Pb (4 - 22 mg kg-1), Cr+6 (9 - 93 mg kg-1) and manganese (76.7 - 2129 µg kg-1) in the same river.

Heavy metals bioaccumulate in aquatic species such as oysters, clams, shrimp, and some fish species. Lango-Reynoso, Landeros-Sánchez and Castañeda-Chávez (2010) determined the bioaccumulation of arsenic, cadmium, and lead in oysters in the Tamiahua Lagoon in Veracruz, with mean values of 4.02 mg kg-1 for arsenic, 11.7 mg kg-1 for cadmium and 0.48 mg kg-1 for lead. The cadmium exceeded the maximum permissible limits stipulated by consumer health rules for bivalves and pose a risk to human health. The pollution in water and sediment in the Ilusiones Lagoon can change the balance of populations, especially those that are most susceptible. Gamboa, Gamboa, Saldívar and Espejel (2007) quantified lead in the blood of crocodile (Cocodrylus moreletti), finding values (6.55 - 15.34 µg dL-1) that were higher than permissible limits for aquatic life.

No recent studies have been published to assess the environmental and ecotoxicological conditions of the Ilusiones Lagoon. The few studies that have been reported include one from 1992 to 1994 of phosphorous (10.6 mg L-1) and total nitrogen (4.1 mg L-1) present in the lagoon, in which it was categorized as hypertrophic with a dendritic morphology and low hydraulic mixture, preventing water changes that favor the persistence of conservative and non-conservative substances (Rodríguez et al., 1994). In general, the content of pollutants in water bodies increases over time. For example, in 1994, 30% of Mexican rivers were polluted by mercury and lead, whereas currently 95% are reported to be polluted. In 1992, the concentration of lead in surface sediments in the Ilusiones Lagoon was 158. 68 µg g-1 (Villanueva & Botello, 1992).

The Ilusiones Lagoon is important to the city of Villahermosa, Tabasco. Because of its great diversity of aquatic and terrestrial species, it was declared a nature reserve in 1995 (Semarnat-Conanp, 2014). However, for several years it has been subjected to stress from human activities that have directly and indirectly deposited agricultural, urban, and industrial waste, degrading its ecological value (Semarnat-Conanp, 2014). While there are practically no studies addressing pollution in the Ilusiones Lagoon, particularly of heavy metals, there are many examples of metal contamination in many rivers in Mexico, suggesting that a body of water with the conditions of the Ilusiones Lagoon can be considered as a potentially polluted site. The aim of this study was to determine the physical and chemical parameters and metals (Pb, Cd, Mn, Zn, Cr, Al and Ni) in water and surface sediment in the Ilusiones Lagoon, and whether they pose a risk of adverse effects to aquatic life.

Material and methods

Study location

The state of Tabasco is located in southeast Mexico, it measures 24 738 km2 and has a warm humid climate with rains in the summer. The mean annual temperature ranges from 24 to 28 °C and annual precipitation ranges between 1500 to 2000 mm (Palma et al., 2007). The Ilusiones Lagoon is located in hydrologic region RH30, in the Grijalva - Usumacinta Basin. It is located in the urban area of Villahermosa (170 59´ 22´´ to 180 01´ 22´´ N and 920 55´ 20´´to 920 56´ 40´´ O), in the physiographic province of the coastal plain of the Gulf of Mexico, and covers an area of 160 ha. It is surrounded by the Mezcalapa and Carrizal rivers at an average altitude of 10 masl (Figure 1). In 1995, the state proclaimed it to be protected area, as an ecological reserve for the preservation of the water, flora, and fauna. The area occupied by the lagoon has decreased an average of 30 ha over a period of 10 years because of the development of the city of Villahermosa (Semarnat-Conanp, 2014; Sernapam, 2014).

Figure 1 The Ilusiones Lagoon study site. 

Collection of environmental arrays

The Ilusions Lagoon was divided into three zones, each defined based on the methodology proposed by Ilizaliturri et al. 2009, with six sampling sites (Figure 2). Six water samples were collected in each, in polyethylene containers. Surface sediments were collected in glass bottles. For the determination of metals in water, polyethylene bottles were used containing 1 mL of concentrated nitric acid to prevent volatilization losses. For the sediment sample, 2-liter amber containers were used. The samples were transported and stored at 4 °C until analysis (NOM-001-Semarnat-1996). Two samplings of water were collected, one in April 2013 and the other in September 2014.

Figure 2 Ilusiones Lagoon sampling sites. 

Physicochemical characterization

Water

The determination of the physicochemical parameters of the water was performed in situ with a multiparameter bench photometer (HANNA) model HI 9828, which recorded pH, temperature (°C), electrical conductivity (EC, µS cm-1), oxidation - reduction potential (ORP, mV), dissolved oxygen (DO, mg L-1), and total dissolved solids (TDS, mg L-1). Chemical oxygen demand (COD, mg L-1) was determined in the laboratory using the closed reflux method with potassium dichromate.

Sediment

The sediment samples were collected with a plastic dredger in 2-liter amber containers which were transported and kept at 4 °C until analysis. These were dried in an oven at 600 C for 72 hours; they were then mechanically homogenized in an agate mortar and filtered with a 600 µm mesh. The sediments were characterized by determining the texture using the Bouyoucos method. Organic matter contents (OM) were determined by the Walkley and Black method, and pH by the electrometric method using a Denver Instruments brand potentiometer, model 215. Electrical conductivity was calculated based on the saturation extract (NOM-021-Semarnat-2000).

Quantification of metals in water and sediment

Before quantifying the metals, the water samples and sediment were digested in a Microwave oven 907, 501 through 3050 and 3052 according to EPA methods. Quantification of metals was carried out with an Analyst 300 model atomic absorption spectrophotometer equipped with flame ionization detector, previously calibrated according to certified reference materials from the National Institute of Standards (NIST) (Benavides et al., 2007; SCFI,-2001a, 2001b). The average values for each of the measured parameters were subjected to analysis of variance (ANOVA) con p < 0.05.

Results and discussion

Figure 3 shows the physicochemical properties determined based on water samples collected from the three areas of the lake. The pH values in water, ranging between 8.9 and 9.6, were alkaline and above the limits (6.5 - 9.0) permitted by the Guidelines for Canadian Water Quality, and the lower limit (8.9) was greater than that which is allowed (5.5) by NOM-002-Semarnat-1996. The highest value (9.6) was present in Zone 3 and the lowest value (8.9) in Zone 1, presumably due to the presence of carbonate and hydroxide ions that can come from anthropogenic waste and soluble natural minerals.

Figure 3 Physicochemical properties determined in water samples. 

The water temperature ranged from 28.8 to 29.9 °C, which was below the limit allowed by Mexican regulations (40 °C). The ORP varied in the three areas, from 5 mV in zone 1 to as much as 80 mV in Zone 2. With regard to the DO, this ranged from 7 to 11 mg L-1, similar to the limits proposed by the EPA (not less than 5 mg L-1) and the Guidelines for Canadian Water Quality (9.5 mg L-1). The EC values ranged from 225 to275 µS cm-1 which were below (2500 µS cm-1) the NOM- 069- ECOL- 1994 for freshwater bodies. The COD ranged from 105 to 155 mg O2 L-1, which was within the range classified as polluted by Conagua in 2012 (40 < CO < 200). TDS (114 - 137 mg L-1) was similar to values reported by the Secretaria de Energía Recursos Naturales y Protección Ambiental (SERNAPAM) in 2012 and 2013 (Table 1). The physicochemical parameters are shown in (Figure 4).

Figure 4 Physicochemical parameters. 

In sediments, the pH ranged from 5.9 (mildly acidic) to 8.4 (mildly alkaline) (NOM- 021 Semarnat 2000). Values of 1 to 11% of OM indicate volcanic origin, and the EC had negligible effects of salinity because it ranged from 4 to 28 µS cm-1. The particle size was, on average, 67.2% sand, 17.2% clay and 15.4% silt for Zone 1; 75.4% sand, 14.5% clay and 10% silt for Zone 2; and 69.2% sand, 16.1% clay and 14.6% silt for Zone 3. In terms of the texture triangle used by the U.S. Department of Agriculture, the results from the three zones corresponded to a textural classification that ranges from sandy to moderately thick sandy loam.

Table 1 Sernapam parameters (NOM-021-Semarnat-2000). 

Period Sampling points pH T (°C) EC (µS/cm) OD (ppm) TDS (ppm) COD (mg/L)
2011 Cencali (n = 1) 6.7± 0.4 26.9 ± 1.6 249 ± 54.0 5.2 ± 1.7 180.8 ± 64 48.4 ± 8.2
Ilusiones (n = 6) 8.5 ± 0.7 27.6 ± 0.6 233.1 ± 25 .3 8.13 ± 2.48 166.1 ± 36.9 47.5 ±6.4
2012 Cencali (n = 1) 6.9 ± 0.4 28.8 ± 2.7 197.8 ± 4.2 8.1 ± 2.9 181.3 ± 29.2 67 ± 9.0
Ilusiones (n = 6) 8.3± 0.9 28.3 ± 2.9 223.2 ± 52.0 8.0 ±2.3 165.6 ± 40.6 59.5 ± 8.7
2013 Cencali (n = 1) 7.7 ±1.2 27± 1.7 246.6 ± 27.7 8.8± 2.1 216 ± 40.3 34 ± 9.3
Ilusiones (n = 6) 8.4 ± 0.7 28.8 ± 1.5 264.5 ± 41.1 9.5± 2.0 170.2 ± 19.9 66 ± 9.2

Table 2 shows the concentrations of the metals quantified in the water (Cd, 2.2 - 5.6 µg L-1), (Ni, 2.2 - 7.8 µg L-1), (Cr, 28 - 64.4 µg L-1), (Mn, 38.9 - 112.2 µg L-1), (Zn, 12.2 - 79.2 µg L-1), (Al, 218 - 1385 µg L-1) and (Pb, ND a 0.1 µg L-1), all below the NOM-001-Semarnat-1996. However, the Cr and Cd hazard ratio (reference concentration / mean) was greater than one. Table 3 shows the concentrations of metals found in sediments (Cd, 1.1 - 4.0 mg/kg), (Ni, 21.4 - 75.3 mg/kg), (Cr, 23.1 - 99.5 mg/kg), (Mn, 42.4 - 341.9 mg/kg), (Zn, 13.8 - 193.2 mg/kg), (Pb, ND - 204 mg/kg) and (Al, 4404.9 - 73593. 6 mg/kg). Here the hazard ratio was greater than one for all metals found except Zn and Mn. According to the legislation of Canada and the United States, when the hazard ratio is greater than unity, there is already a potential risk to aquatic life.

Table 2 Heavy metals in surface water. 

Zone Mn Ni Cd Pb Cr Zn Al
Z1A1 96.7 (5.6 3.3 (55.6 49.9 21.7 894.4
Z1A2 101.1 4.4 4.4 (44.4 46.8 28.1 634.4
Z1A3 Microwave oven 907 2.2 2.2 (44.4 55.0 28.0 1385.6
Z1A4 108.9 7.8 4.4 (11.1 50.2 28.3 175.6
Z1A5 75.6 2.2 3.3 (33.3 59.8 53.7 584.4
Z1A6 112.2 (3.3 4.4 (55.6 49.1 32.7 484.4
ZIIA1 63.3 6.7 4.4 (22.2 64.4 23.6 541.1
ZIIA2 53.3 7.8 3.3 (55.6 58.6 79.2 351.1
ZIIA3 65.6 (1.1 4.4 (22.2 61.9 26.3 621.1
ZIIA4 51.1 (3.3 4.4 (44.4 64.4 20.2 696.7
ZIIA5 72.2 7.8 5.6 (44.4 63.3 26.1 790.0
ZIIA6 53.3 (3.3 2.2 (66.7 49.9 58.7 1155.6
ZIIIA1 51.7 6.7 3.9 (27.8 59.3 23.7 472.2
ZIIIA2 45.6 (3.3 5.6 (44.4 33.9 24.6 598.9
ZIIIA3 43.3 5.6 4.4 (33.3 28.0 43.6 374.4
ZIIIA4 46.7 (2.2 4.4 (55.6 30.7 18.8 764.4
ZIIIA5 45.0 0.0 3.9 (50.0 45.1 24.9 311.7
ZIIIA6 38.9 3.3 4.4 (44.4 30.4 65.9 184.4

( : Low detection limit. All concentrations are in μg L-1.

Table 3 Heavy metals in surface sediments. 

Concentration (mg/kg) Mn Ni Cd Pb Cr Zn Al (%)
Z I S1 75.3 18.6 1.9 9.0 91.2 33.6 5257 (0.5)
Z I S2 42.4 41.3 1.7 24.4 71.9 300.3 42753 (4.3)
Z I S3 114.4 30.9 1.6 7.5 61.2 66.9 17433 (1.7)
Z I S4 53.2 21.4 1.1 ND 37.9 42.3 30020 (3.0)
Z I S5 57.4 24.7 2.2 21.2 24.4 80.9 12322 (1.2)
Z I S6 92.1 28.3 3.2 204.7 38.0 193.2 19404 (1.9)
Z II S1 102.7 21.7 2.6 17.0 23.1 26.9 2563 (0.3)
Z II S2 47.7 24.8 2.9 57.5 34.7 84.3 19227 (1.9)
Z II S3 124.6 30.3 3.3 37.4 50.8 35.5 21887 (2.2)
Z II S4 123.0 26.1 3.2 40.3 66.4 13.8 17752 (1.8)
Z II S5 158.1 28.7 3.4 38.5 70.6 44.2 15629 (1.6)
Z II S6 47.3 33.9 2.9 23.8 58.7 52.1 20353 (2.0)
Z III S1 114.3 29.1 2.2 44.8 78.1 45.5 20584 (2.1)
Z III S2 152.7 23.8 2.7 22.2 44.0 43.8 4405 (0.4)
Z III S3 82.3 42.1 3.1 35.7 63.2 80.3 66074 (6.6)
Z III S4 341.9 26.3 2.7 29.4 99.5 34.1 32673 (3.3)
Z III S5 44.7 33.2 3.0 24.1 71.9 86.1 73811 (7.4)
Z III S6 75.8 52.1 4.0 137.9 74.0 47.3 73594 (7.4)
Average ± DE 102.8 ± 70.1 29.9 ± 8.4 2.6 ± 0.7 42.8 ± 50.3 58.9 ± 21.8 72.8 ± 69.1 2.8 ± 2.2
*LEL (NJ-DEP) 630 16 0.6 31 26 120 2.55
ISQG (CSQG) - - 0.6 35 37.3 123 -
*CP (Average/LEL) 0.2 1.9 4.3 1.4 2.3 0.6 1.1

Conclusions

In this study site, the pH values in water ranged between 8.9 and 9.6, which were alkaline and above the limits (6.5 - 9.0) permitted by the Guidelines for Canadian Water Quality. The water temperature (28.8 - 29.9 °C) was below the limit allowed by Mexican regulations (40 °C). The dissolved oxygen was similar to values established by the EPA and the Guidelines for Canadian Water Quality. The COD value of the water body was classified as polluted by Conagua in 2012 (40 < COD < 200 mg L-1). The EC and TDS values were within the parameters set by the SERNAPAM, while the heavy metals in the water (Cd, Ni, Cr, Mn, Zn, Al and Pb) were all below the NOM-001-Semarnat 1996.

In the sediment, the pH ranged from 5.9 (moderately acidic) to 8.4 (moderately alkaline), which was within permissible limits stipulated by NOM-021 Semarnat 2000. The percentage of organic matter indicated volcanic origin and the electric conductivity showed negligible effects from salinity. The particle size in the three sampling areas corresponded to a textural classification that ranged from sandy to moderately thick sandy loam. The concentrations of Cd, Ni, Cu, Mn, Zn, Pb and Al in sediment were within the Mexican norms, however when compared to the values corresponding to Canadian and United States standards, they exceeded the criteria established for heavy metals in freshwater bodies. This indicates that the biota was affected in terms of accumulating high concentrations of these metals in the system studied. Therefore, the authorities should be aware of the imminent dangers that to which nearby towns may be exposed.

Acknowledgment

Thank you to the Autonomy University Juarez of Tabasco and the Academic Division of Engineering and Architecture for the Research Fund UJAT key UJAT-2013-IA-05 provided to conduct this research project, and Genetic and Ambient Research Center, Autonomy University of Tlaxcala.

REFERENCES

Agency for Toxic Substances & Disease Registry, ATSDR. (2012). Reseña toxicológica del plomo. Atlanta, USA: Agency for Toxic Substances & Disease Registry, Departamento de Salud y Servicios Humanos de EE.UU., Servicio de Salud Pública. [ Links ]

Benavides, A., Moreno, M., Sosa, M., Puga, S., Soto, R., & Lebgue, T. (2007, junio). Evaluación de la calidad del agua en las principales lagunas del estado de Chihuahua. Ponencia presentada en el VI Congreso Internacional y XII Nacional de Ciencias Ambientales, ciudad de Chihuahua, Chihuahua, México. [ Links ]

Chen, G., & White, P. A. (2004). The mutagenic hazards of aquatic sediments: A review. Mutagenesis Section, Safe Environments Program, Health Canada, 567, 151-225, DOI: 10.1016/j.mrrev.2004.08.005 [ Links ]

Comisión Nacional del Agua, Conagua. (2012). Atlas del agua en México 2012. México, DF: Comisión Nacional del Agua. Recuperado de https://www.conagua.gob.mxLinks ]

Environmental Protection Agency, EPA. (2000). Method 3052. Microwave Assisted EPA (1996). Method 3050B. Acid digestion of sediments, sludges and soils, Research Triangle Park, NC.US. Environmental Protection Agency. Acid Digestion of Siliceous and Organically Based Matrices. Washington, DC: Environmental Protection Agency. [ Links ]

Gamboa, M. T., Gamboa, R., Saldívar, L., & Espejel, G. (2007). Contaminación de metales en fauna silvestre. En: Memorias de la Semana de Divulgación y Video Científico 2007. Villahermosa, México: Universidad Juárez Autónoma de Tabasco. [ Links ]

García-Nieto, E., Carrizales-Yañez, L., Juárez-Santacruz, L., García-Gallegos, E., Hernández-Acosta, E., Briones-Corona, E., & Vázquez-Cuecuecha, O. G. (2011). Plomo y arsénico en la subcuenca del Alto Atoyac en Tlaxcala, México. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 17(1), 7-17. [ Links ]

González-Mille, D., Ilizaliturri-Hernández, C. A, Espinoza-Reyes, G., Costilla-Salazar, R., Díaz-Barriga, F., Izelema, I., & Mejía-Saavedra, J. (2010). Exposure to persistent organic pollutants (POPs) and DNA damage as an indicator of environmental stress in fish of different feeding habits of Coatzacoalcos, Veracruz, México. Ecotoxicology, 19(7), 1238-1248, DOI: 10.1007/s10646-010-0508-x [ Links ]

Herrera, J., Rodríguez J., Coto, J., Salgado, V., & Borbón, H. (2012). Evaluación de metales pesados en los sedimentos superficiales del río Pirro. Tecnología en Marcha, 26(1), 27-36. [ Links ]

Lango-Reynoso, F., Landeros-Sánchez, C., & Castañeda-Chávez, M. D. (2010). Bioaccumulation of cadmium, lead and arsenic in Crassostrea Virginica fom Tamiahua Lagoon System Veracruz, México. Revista Internacional de Contaminación Ambiental, 26(8), 201-210. [ Links ]

Lemus, M., Castañeda, J., & Chung, K. (2014). Heavy metals in fish and invertebrates from the Gulf of Paria, Venezuela. Revista Internacional de Contaminación Ambiental, 30(29), 137-142. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992014000200001Links ]

Norma Oficial Mexicana NOM-001-ECOL-1996, que establece los límites máximos permisibles de contaminantes en las descargas de agua (1996). [ Links ]

Palma, L. D. J., Cisneros, D. J., Moreno, C. E., & Rincón, R. J. A. (2007). Suelos de Tabasco: su uso y manejo sustentable (195 pp.). Villahermosa, México: Colegio de Postgraduados-ISPROTAB-FUPROTAB. [ Links ]

Rodríguez, E., Ruíz, M., & Vertiz, L. A. (1994). Procesos de eutroficación en siete lagunas urbanas de Villahermosa, Tabasco. Consultado el 16 de agosto de 2013. Recuperado de Recuperado de http://www.bvsde.paho.org/bvsaidis/puertorico/xli.pdf .Villahermosa,Tabasco [ Links ]

Rosales-Hoz, L., & Carranza-Edwards, A. (1998). Heavy metals in sediments from Coatzacoalcos River, México. Bulletin of Environmental Contamination and Toxicology, 60, 553-561. [ Links ]

Secretaría de Comercio y Fomento industrial, SCFI. (2001a). Norma Oficial Mexicana C. Análisis de agua - Determinación de la demanda química de oxígeno en aguas naturales, residuales y residuales tratadas. México, DF: Secretaría de Comercio y Fomento industrial. [ Links ]

Secretaría de Comercio y Fomento industrial, SCFI. (2001b). Norma Oficial Mexicana NMX-AA-051-SCFI-2001. Determinación de metales por absorción atómica en aguas naturales, potables, residuales y residuales tratadas. México, DF: Secretaría de Comercio y Fomento industrial . [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales, Semarnat. (1996a). Norma Oficial Mexicana NOM-002-Semarnat-1996 que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales a los sistemas de alcantarillado urbano o municipal. México, DF: Secretaría de Medio Ambiente y Recursos Naturales. [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales, Semarnat. (1996b). Norma Oficial Mexicana NOM-001-Semarnat-1996 que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. México, DF: Secretaría de Medio Ambiente y Recursos Naturales . [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales, Semarnat. (2000). Norma Oficial Mexicana NOM-021-Semarnat-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. México, DF: Secretaría de Medio Ambiente y Recursos Naturales . [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales-Comisión Natural de Áreas Naturales Protegidas, Semarnat-Conanp. (2014). Reservas de la biosfera. México, DF: Secretaría del Medio Ambiente y Recursos Naturales, Comisión Natural de Áreas Naturales Protegidas. Recuperado de http://www.conanp.gob.mx/que_hacemos/reservas_biosfera.phpLinks ]

Secretaría de Energía, Recursos Naturales y Protección Ambiental, Sernapam (2014). Conservación. Villahermosa, México: Secretaría de Energía, Recursos Naturales y Protección Ambiental. Recuperado de http://sernapam.tabasco.gob.mx/tags/conservaciónLinks ]

Sobrino, A., Cáceres, C., & Rosas, R. (2007). Evaluación del riesgo por consumir moluscos contaminados con cadmio, cromo y plomo. Hidrobiológica, 17, 49-58. [ Links ]

Theoneste, N., Gang, D., Jing, S. G., Xu, G., & Lei, H. (2013). Pollution and potential ecological risk assessment of heavy metals in a lake. Polish Journal of Environmental Studies, 22(4), 1129-1134. [ Links ]

Villanueva, F. S., & Botello, V. A. (1992). Metales pesados en la zona costera del Golfo de México Caribe Mexicano. Revista Internacional de Contaminación Ambiental, 8(1), 47-61. [ Links ]

Received: March 27, 2017; Accepted: October 26, 2017

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons