SciELO - Scientific Electronic Library Online

 
vol.7 número38Áreas naturales protegidas y sistema de uso común de recursos forestales en el Nevado de TolucaVariación de la distribución de carbono entre la raíz y la parte aérea en tres especies de pino índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias forestales

versão impressa ISSN 2007-1132

Rev. mex. de cienc. forestales vol.7 no.38 México Nov./Dez. 2016

 

Articles

Juglans pyriformis Liebm. seed tree selection in natural populations of Coatepec and Coacoatzintla, Veracruz

Eunice Ortiz Muñoz1  * 

Celia Cecilia Acosta Hernández1 

Pascual Linares Márquez1 

Zoylo Morales Romero2 

Virginia Rebolledo Camacho3 

1 Facultad de Biología. Universidad Veracruzana. Campus, Xalapa. Veracruz. México.

2Facultad de Estadística e Informática. Universidad Veracruzana, Campus Xalapa. México.

3Instituto de Investigaciones Forestales (INIFOR). Universidad Veracruzana, Campus Xalapa. México.


Abstract

A potential in situ preservation strategy for endangered species like Juglans pyriformis is to select seed trees --whereby natural regeneration is ensured--, collect seeds from known, reliable sources for the establishment of preservation plantations, and maintain the structure of the forest. With the purpose of selecting J. pyriformis seed trees in scattered areas of the Montane Cloud Forest in Coatepec and Coacoatzintla, Veracruz, a non-probabilistic quota sampling procedure was carried out in order to determine the phenotypic and dasometric characteristics of 20 trees per population. 48 fruits were collected from each, and the seeds were collected and germinated in a greenhouse under a totally random block experimental design of 12 seeds per block. The number of seeds germinated per tree was recorded during 133 days. The height and the root neck diameter were measured in the seedlings, and the dry weight was estimated, using Dickson’s index, in order to assess their quality. Based on the classification of the trees, the germinative vigor of the seeds and the quality of the seedlings, the individuals were classified into two categories. Category I grouped specimens with outstanding phenotypic and dasometric characteristics and high values for seed and seedling quality. Category II included trees with lower values than those of I. Nine seed trees of Category I and eleven of Category II were identified in Coatepec. Two seed trees belonging to Category I, and eighteen of Category II were identified in Coacoatzintla.

Key words: Plant quality; seed quality; dasometric characterization; phenotypic characterization; Dickson’s index; germinative vigor

Resumen

Una estrategia de conservación in situ para especies amenazadas como Juglans pyriformis puede ser la selección de árboles semilleros, la cual garantiza la regeneración natural, colectar semilla de procedencia conocida para el establecimiento de plantaciones de conservación y mantener la estructura del bosque. Con el objetivo de seleccionar árboles semilleros de J. pyriformis en fragmentos de Bosque Mesófilo de Montaña en Coatepec y Coacoatzintla, Veracruz, se realizó un muestreo no probabilístico por cuota para caracterizar fenotípica y dasométricamente 20 árboles por población. Se recolectaron 48 frutos de cada uno y se obtuvieron las semillas, que se germinaron en invernadero, bajo un diseño experimental de bloques completamente al azar con unidad experimental de 12 semillas por bloque. Durante 133 días se registró el número de semillas germinadas por árbol. En las plántulas se midió la altura, diámetro cuello/raíz, y se obtuvo el peso seco para evaluar su calidad, mediante el índice de Dickson. Con base en la calificación de los árboles, el vigor germinativo de las semillas y la calidad de la plántula, los individuos fueron clasificados en dos categorías. La Categoría I, agrupó ejemplares con características fenotípicas y dasométricas sobresalientes, valores altos en calidad de semilla y de plántula. En la Categoría II se incluyeron árboles con valores menores, respecto a los de la I. En la población de Coatepec se identificaron nueve árboles semilleros Categoría I; y 11 Categoría II. En la población de Coacoatzintla se identificaron dos árboles semilleros Categoría I; y 18 Categoría II.

Palabras clave: Calidad de planta; calidad de semilla; caracterización dasométrica; caracterización fenotípica; índice de Dickson; vigor germinativo

Introduction

Juglans pyriformis Liebm. (Juglandaceae), commonly known as cedar-walnut, is an endemic species that grows in the medium-high stratum of the montane cloud forest in the states of Hidalgo, Oaxaca and Veracruz, at altitudes between 1 200 and 1 600 m (Narave, 1983; Luna-Vega et al. 2006); according to NOM-059, it is registered as endangered (Semarnat, 2010).

In Veracruz, cedar-walnut is very valuable, as its wood -of great beauty and hardness- is used for making fine furniture and music instruments; furthermore, it is used as living fences or for shade in coffee plantations, and for this reason it has been overexploited (Luna et al. 2006). This fact has contributed to the reduction of its populations, but has also promoted the establishment of pure or mixed plantations with commercial purposes. Thus, since 2001, it was established in approximately 400 hectares in the state, with the support of the Forest Plantation Program (Programa de Plantaciones Forestales, PRODEFOR) sponsored by the National Forestry Commission (Comisión Nacional Forestal) (Conafor, 2008).

This endeavor has generated the demand of the J. pyriformis plant; therefore, in certain forest nurseries of the Xalapa region, it is reproduced from seeds of natural populations still present in scattered areas of the Montane Cloud Forest of Coatepec, Huatusco, Coacoatzintla and San José Buenavista. However, this germoplasm is obtained from fruits that are massively collected from the ground, as in the long term the quality of the seeds is reflected in the yield and the in-field development of the trees, as well as in their high susceptibility to pests, diseases and environmental changes. In the short term, the implications are reflected in the seed production and handling costs (Jardel, 2006).

The obtainment of germoplasm from an identified source, and from natural forest masses allows the collection to have a broad genetic base and a strategy for the preservation of the genetic pool of the species. This will ensure higher levels of adaptability and survival rates in plants produced in a nursery when taken to similar ecological conditions to those of the region of origin (Salazar and Boshier, 1989; Carrillo and Ávila, 1979).

Thus, the present work was proffered for the purpose of selecting seed trees in certain areas of the Montane Cloud Forest from the natural populations in Coatepec and Coacoatzintla, Veracruz, based on their phenotypic characteristics and in the quality of the seeds and of the nursery-grown seedlings.

Materials and Methods

The assessed Juglans pyriformis trees are located in natural areas within the municipalities of Coatepec and Coacoatzintla, Veracruz (Figure 1).

Figure 1 Location of Juglans pyriformis Liebm. trees in the natural populations of Coatepec and Coacoatzintla, Veracruz. 

The cedar-walnut tree population of Coatepec is located at an altitude of 1 200 to 1 400 m; it is made up of trees scattered in small relicts of the Montane Cloud Forest and coffee plantations. The climate in the region is temperate-humid-regular, with abundant rains in the summer and early fall. The mean annual temperature is 19.9 °C (max. 35.8 °C, min. 4 °C), and the annual precipitation is 1 764.9 mm (Servicio Meteorológico Nacional, 2014a).

Cedar-walnut individuals of Coacoatzintla are located at an altitude between 1 200 and 1 600 m. The population is constituted by trees scattered in a fragment of the Montane Cloud Forest (Figure 1). The climate is regular temperate-humid, with abundant rains in summer and early fall. Mean annual temperature of 17.5 °C (max. 37 °C, min. 7.5 °C), and an annual precipitation of 1 606.7 mm (Servicio Meteorológico Nacional, 2014b).

From September to October, 2012, both populations were toured in order to evaluate 20 trees based on two criteria:the trees should 1) be mature and fruiting; 2) stand at a distance equal or above 50 m from each other, in order to avoid the effect of co-ancestry (Acosta-Hernández et al., 2011a).

The phenotypic characterization was based on the matrix proposed by Samaniego (2002), which is a qualitative evaluation of six parameters by which to assess the stem shape, forking height, dominance of the main axis, branch angle, crown shape and crown diameter, and makes it possible to determine the suitability of the individuals as seed trees, assigning a score to each of the assessed parameters. Furthermore, the total height of the tree was measured using a (Sunntu®) clinometer, and the diameter at breast height (DBH = 1.3 m) using a 3 m (Truper®) longimeter. Each individual was georeferenced using a (Garmin® map 60 csx) GPS, and identified in a numerical sequence with spray paint. 48 fruits per tree (960 fruits per population) were collected and transferred in cloth bags labeled with the tree number and population for their subsequent exploitation and the obtainment of seeds.

The germination assay--with an experimental design consisting of four complete random blocks and 12 seeds per experimental unit--was established on November 19, 2012 in the nursery area adjoining the greenhouse in the Campus for the arts, culture and sports of Universidad Veracruzana in Xalapa (USBI-Xalapa), located at the coordinates 19°30’30” N and 96°55’30” W, at an altitude of 1 300 masl.

The seeds were sown in black rigid plastic 200 mL tubes containing substratum with earth and “tepezil” in a 1:1 proportion. Before and after sowing, they were treated with a 10 g L-1 Captan solution.

The germination was recorded during 133 days (19 weeks) after sowing. The registered variables were: sowing date, onset of germination (OG = 5% of the seeds germinated per tree), date of emergence of the seedling and number of germinated seeds per tree, on a daily basis, since the germination of the first seed.

The quality of the seedlings was assessed during three months (April, May and June) from the time of emergence of true leaves; the height (cm) from the neck of the seedling to the apical shoot, with a 3 m (Truper®) flexometer, and diameter (mm) at the root neck, using a (Mitutoyo®) digital vernier caliper, in 12 randomly selected seedlings per block (three seedlings per experimental unit).

Data analysis

Dasometric and phenotypic characterization of trees

Based on the qualitative assessment of the parameters proposed in Samaniego’s matrix (Samaniego, 2002), the corresponding values were added in order to obtain the score per tree and to classify each tree by its phenotypic characteristics (Table 1).

Table 1 Description of the phenotypic characteristics of the trees and scores for their classification according to the in-field assessment. Modified by Samaniego (2002)

Phenotypic characteristics Score Class Seed trees
Trees with outstanding characteristics: straight unforked stem, complete dominance of the main axis, 60° to 90° branch insertion angles, dominant crown. 18 to 24 1 YES
Trees with medium characteristics: slightly gnarled stem, high forking, partial dominance of the main axis, 30° to 60° branch insertion angles, average crown. 9 to 17 2 YES
Trees with undesireable characteristics: gnarled stem, forking at the middle or lower third, 0° to 30° branch insertion angles, small crown. ≤ 8 3 NO

Germination assessment

The following parameters were estimated for the nursery-grown variables (Piedrahíta, 1998; López and Piedrahita, 1998): germinative potency (GP%), mean daily germination (MDG), onset of the germination (OG), mean germination time (MGT) and germinative vigor or Czabator’s Index (GV), using the expression:

GV = MV x MDG

Where:

MV = The maximum coefficient obtained by dividing each one of the accumulated daily germinations by the corresponding number of days that it took

For the purposes of the present work, the quality of the seeds was defined, based on the germinative vigor intervals (Czabator’s Index), as low (<0.169), medium (0.170-0.340) and high (≥0.341), and on the germinative potency (GP %).

Seedling assessment

Dickson’s Index (DI) was estimated using the follwing formula (Olivo and Buduba, 2006):

D=Total weight (g)Height (cm)Stem diameter (mm)+Dry aboveground weight (g)Dry root weight (g)

The quality of the plants was classified as low (<0.2), medium (0.3-0.4) and high (≥0.5), based on the quality intervals established by Sáenz et al. (2010) for Dickson’s Index, in order to evaluate the plants produced in nine nurseries in the state of Jalisco.

Results and Discussion

Phenotypic and dasometric classification of trees

In terms of phenotypic assessment, J. pyriformis trees in both populations were grouped into Classes 1 and 2; this is an indication that they may be considered to be seed trees. A higher number of Class I individuals--which stand out for their height and diameter, are dominant and are part of the higher canopy--were identified in Coatepec. On the other hand, Class 2 trees are codominant and have medium phenotypic characteristics (Table 2).

Table 2 Classification of Juglans pyriformi s Liebm. trees in the populations of Coatepec (CT) and Coacoatzintla (CC), based on their phenotypic assessment, height and diameter ± Standard error. 

Population Class Phenotypic assessment Mean diam eter Mean height Tree Total
CT 1 18-26 59.19 ± 19.3 21.41 ± 6.6 1, 2, 4, 5, 6, 7, 10, 12, 13, 14, 15, 17 and 20 13
2 11-17 35.83 ± 16.4 15.40 ± 3.2 3, 8,9, 11, 16, 18 and 19 7
CC 1 18 - 24 49.16 ± 7.59 17.99 ± 6.0 1, 2, 3, 8, 9, 10, 12, 14 and 19 9
2 12 - 17 52.52 ± 11.5 17.53 ± 5.2 4, 5, 6, 7, 11, 13, 15, 16, 17, 18 and 20 11

Class I trees are less numerous in the population of Coacoatzintla and they are codominant, while Class 2 trees are dominant. The height and mean diameter of J. pyriformis in both populations are within the ranges of 4-25 m and 38-69 cm, respectively, cited by Acosta-Hernández et al. (2011b) for groups I and III in the population of Coacoatzintla.

Using the same methodology, Acosta-Hernández et al. (2011a) characterized 112 J. pyriformis specimens in the population of Coacoatzintla, in order to determine the level of morphological variation. The data analysis, based on Main Components (MC), evidenced three groups, which coincided with the classes proposed by Samaniego (2002). This matrix was used by Salan (2011) to select Cedrela odorata L. seed trees and identified seven Class III and three Class II trees in the native forests of the Ecuadorian Amazon Region.

The method developed by Samaniego (2002) has been utilized to assess previously identified and selected Caesalpinia spinosa (Molina) Kuntze seed sources in order to promote their management for purposes of genetic enhancement.

In their assay of 24 J. regia offsprings, Aletá et al. (2009) point out that the branch insertion angle, branching and straightness are highly hereditary; the same phenotypic characteristics were evaluated in J. pyriformis individuals. According to these authors, the branch insertion angle and branching show no modifications through time, and therefore are reliable characteristics for the selection of seed trees. Aletá et al. (2003) mentioned that the expression of diameter and height depends on the conditions of the site where the seedlings are established, and its observation as a criterion for the selection of seed trees must therefore be taken with reservations.

Physiological quality of the seed

Seeds from Coatepec began germinating in the fourth week, but they reached a GI of 5% (GI) and a MGT of 50% one week after those from Coacoatzintla; at the end of the assay (133 days), they had a higher germinative potency (GP%) (Figure 2).

Figure 2 Germination percentage, accumulated per week, of Juglans pyriformis Liebm. seeds from the populations of Coatepec (CT) and Coacoatzintla (CC). 

The GP per tree/population was over 50% in the seeds of individuals from Coatepec; nine of these had values near or above 80%. Conversely, only the seeds of 16 trees from Coacoatzintla had a GP of 50%; nine registered values near or equal to 80% (Figure 3 A and B).

Figure 3 Germinative Potency per Juglans pyriformis Liebm. tree and per population. 

According to the established seed quality intervals (Table 3), twelve individuals with a high quality seed and eight with a medium quality seed were identified in the population of Coatepec, while in the population of Coacoatzintla twelve trees had a high quality seed, four had a medium quality seed, and another four, a low quality seed.

Table 3 Seed classification by Germinative Vigor (GV) and tree number for each population: Coatepec (CT) and Coacoatzintla (CC). 

Population Quality GV Tree
CT High 0.341 - 0.606 1, 4, 5, 7, 8, 9, 10, 14, 15, 17, 19 y 20
Medium 0.187 - 0.327 2, 3, 6, 11, 12, 13, 16 y 18
CC High 0.343 - 0.679 2, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19 y 20
Medium 0.174 - 0.286 1, 7, 9, 15
Low 0.053 - 0.139 3, 4, 6, 17

Most seeds from Coatepec had high values for germinative potency (GP%), mean daily germination (MDG) and germinative vigor (GV); therefore, their quality is higher than that of seeds from Coacoatzintla. The variation coefficient for GP% and GV is low, a sign that there is little variation in germination in both populations (Table 4).

Table 4 Means ± standard deviations of the germination variables of Juglans pyriformis Liebm. in the populations of Coatepec (CT) and Coacoatzintla (CC). 

Population Germinative potency Variation coefficient Mean daily germination Germinative vigor ±Standard error Variation coefficient
CT 74.79±2.31 3.09 0.56 5.77 ± 0.03 7.42
CC 71.15±3.88 5.46 0.53 4.87 ± 0.04 11.30

The germination percentage of J. pyriformis is higher than that cited for Juglans neotropica (35%) (López and Piedrahita, 1998), but lower for those registered by CATIE (1999) in fresh seeds of J. neotropica (80-90%): 100% was registered by Quintero-García and Jaramillo-Villegas (2012), and 80%, by Gómez, (2002 quoted in Quintero-García and Jaramillo-Villegas, 2012) for the same species. It also came lower than the value reported for J. regia under nursery production conditions (80%) and with pregerminative treatments (85-95%) (Vahdati and Hoseini, 2005).

The comparison between germination percentages must be taken with reservations, given that, in many of the referred works, values were obtained after the biological material was subjected to pregerminative treatments. It is noteworthy that J. pyriformis seeds (Figure 4) are cataloged as sub-orthodox, i.e., their storage periods must be short due to their high content of lipids (Rojas, 1995). Nevertheless, the percentages for both populations in the present study are high without any treatment; this is attributed to the fact that the seeds were sown immediately after they were collected, and therefore their germinative vigor had not diminished due to the passage of time.

A) Fruit, B) Rotting of the fruit, C) Seeds, D) Seeds sown in tubes, and E) Germination.

Figure 4 Collection and establishment of nursery-grown Juglans pyriformis Liebm. seeds. 

Plant quality

The seedlings obtained from germinated seeds from Coatepec had a Dickson’s Index (DI) of >0.500, and were therefore classified as high quality. Tree No. 9 stands out with an index of 2.081. Seedlings from Coacoatzintla seeds attained a high and a medium quality; five trees stand out for their high plant quality, including tree No. 7, which had an index of 0.961--the highest among this population--, while the rest of the individuals (15) were classified as medium quality (Table 5).

Table 5 Quality of the seedlings and trees from the seeds of the populations of Coatepec (CT) and Coacoatzintla (CC). 

Population Quality DI Tree
CT High 0.592-2.081 All
CC High 0.505-0.961 1, 7, 10, 14 y 18
Medium 0.347-0.476 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19 y 20

The asessment of the plants using Dickson’s index is highly important, as it predicts the in-field survival and growth, by integrating morphological variables of height and diameter with the weight of the plant, all of which maintain a highly significant interaction; thus, the higher the index, the better the plant (Dickson et al. 1960; Olivo and Buduba, 2006; Rodríguez, 2008; Rueda et al. 2012).

The records for J. pyriformis are comparable to those documented by Rueda et al. (2012) for five pine species (Pinus devoniana Lindl., P. oocarpa Schiede ex Schltdl., P. greggii Engelm. ex Parl. and P. pseudostrobus Lindl., Pinus douglasiana Martínez) and 10 rainforest species (Leucaena leucocephala (Lam.) de Wit, Enterolobium cyclocarpum (Jacq.) Griseb., Roseodendron donell-smithii (Rose) Miranda, Tabebuia rosea (Bertol) DC., Eucalyptus globulus Labill., Pithecellobium dulce (Roxb.) Benth., Prosopis juliflora (Sw.) DC., Eysenhardtia polystachya (Ortega) Sarg, Cupressus lusitanica Mill., Cedrela odorata), produced in eight forest nurseries in Jalisco under a technified production system.

The quality of the nursery-grown plants of Michoacán is comparable to that obtained for J. pyriformis. For example, P. michoacana had a DI between 0.59 and 4.1 and was rated as high; in P. greggii, P. oocarpa and P. pseudostrobus, a medium quality was obtained (ID 0.21 to 0.32) , while P. greggii had the lowest DI (0.13), rated as low quality (Saenz et al.,2010).

After comparing the plant quality (DI) of the species mentioned above with the DI values determined for J. pyriformis, it may be said that, as long as it is grown in similar edaphic and climatic conditions to those of its place of origin, it will be able to survive and develop properly; this shows the importance of having a priori knowledge of the conditions into which it will be planted and of determining the quality of the plant before it leaves the nursery.

Seed tree selection

Based on the facts that seed trees must have outstanding characteristics, that the germination percentages and vigor of their seeds must be high (Poulsen, 2000), and that the seedlings produced in the nursery must have morphological characteristics suitable for the plantation site in order to survive and develop properly (Rodríguez, 2008), two categories were defined in the selection of J. pyriformis seed trees, under the following criteria:

Category I: Class 1 trees, with a germinative vigor or Czabator’s Index (GV ≥ 0.341) equivalent to GP% ≥ 75 and a Dickson’s Index (DI) equal to or above 0.5 per tree/population.

Category II: Class 1 or Class 2 trees, with a low or mediumgerminative value (<0.169; 0.170-0.340, respectively) and a low or medium Dickson’s Index (<0.2; 0.2-0.4, respectively).

Based on these criteria, nine potential seed trees in the population of Coatepec and two in Coacoatzintla were identified as belonging to Category I; the rest pertain to Category II (Table 6).

For the populations of Coatepec, columns 1 to 9 belong to Category I and from 10 to 20 to Category II. For those of Coacoatzintla, only columns 1 and 2 are classified into Category I and the rest into Category II.

Table 6 Category I and II Juglans pyriformis Liebm. seed trees within the populations Coatepec (CT) and Coacoatzintla (CC). 

According to the criteria of Samaniego (2002), Class 1 J. pyriformis individuals are phenotypically outstanding and therefore may be regarded as seed trees. Sanjuanbenito and Ramírez (2007) mention that the seed collected from the outstanding trees can be destined to the establishment of commercial plantations, genetic enhancement and conservation and reforestation programs. Class 2 trees have certain outstanding phenotypic characteristics, but they exhibit high forking and a partial dominance of the main axis (Samaniego, 2002; Sanjuanbenito and Ramírez, 2007); their seeds can be utilized in conservation and protection programs.

Populations localized in Coatepec and Coacoatzintla have sufficient characteristics that make them sources of seeds: they are accessible, and the trees they contain have a good phytosanitary status and include sufficient mature individuals for seed collection. The germoplasm from trees classified within Category I can be used to produce seedlings for the establishment of commercial plantations, genetic enhancement and conservation and reforestation programs. The seeds of Category II trees can be used to grow seedlings for programs for the conservation and protection of soils and ecosystems.

In order to manage them, it is important to implement a conservation program in which Juglans pyriformis may be considered as a component of the structure and functionality of the Montane Cloud Forest, not only from an economic perspective but also from the ecologic point of view. Such a program must address the local conditions and integrate the coordinated participation of the involved sectors so as to be sustainable and ensure the permanence of the species.

Conclusions

A larger number of trees with outstanding phenotypic characteristics for selection as seed trees were identified in the population of Coatepec. Likewise, the seed quality in this population has a higher germinative potential, and the seedlings are of a high quality.

Acknowledgements

The present work was made possible thanks to the PROMEP/103.5/12/4543 funding provided by the Support for the Proyecto de Apoyo para la Reincorporación de Exbecarios, “Bases para la conservación in situ de Juglans pyriformis: una especie en peligro de extinción”), “Bases for the in situ preservation of Juglans pyriformis, an endangered species” Project for the Reincorporation of Former Grantees). The authors wish to express, too, our gratitude to those plot owners in Coatepec and Coacoatzintla who gave us permission to collect Juglans pyriformis seeds.

REFERENCES

Acosta-Hernández, C. C., M. Luna-Rodríguez, J. C. Noa-Carrazana, J. Galindo-González, S. M. Vázquez-Torres, Z. Morales-Romero y L. G. Iglesias-Andreu. 2011a. Caracterización morfológica y dasométrica de la especie amenazada Juglans pyriformis Liebm. Revista Chapingo Serie Ciencias Forestales y del Ambiente 17(1):59-67. [ Links ]

Acosta-Hernández, C. C. , M. Luna-Rodríguez, P. Octavio-Aguilar, Z. Morales-Romero, J. Galindo-González, J. C. Noa-Carrazana, S. M. Vázquez-Torres y L. G. Iglesias-Andreu L. 2011b. Efecto del aprovechamiento forestal sobre la variación morfológica de Juglans pyriformis Liebm. Revista Chapingo Serie Ciencias Forestales y del Ambiente 17(3):379-388. [ Links ]

Aletà, N., A. Ninot y J. Voltas. 2003. Caracterización de doce genotipos de Juglans spp en dos localidades de Cataluña. Investigación Agraria: Sistemas Agroforestales 12(1): 29-50. [ Links ]

Aletà, N. , A. Vilanova, R. Díaz y J. Voltas. 2009. Comportamiento de 24 progenies de nogal común (Juglans regia L.) para su uso en la producción de madera. Resultados hasta sexto año de crecimiento. V Congreso Forestal Español. 21-25 de septiembre de 2009. Ávila, España.12 p. [ Links ]

Carrillo S., A. y J. Ávila G . 1979. Colecta y rendimiento de semillas de coníferas-Estimación en función de peso de conos. Ciencia Forestal 20(4): 13-31. [ Links ]

Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). 1999. Juglans neotropica Diels. Centro agronómico de Costa Rica. Nota técnica sobre semillas forestales Núm.82. Turrialba, Costa Rica. pp. 1-2. [ Links ]

Comisión Nacional Forestal (Conafor). 2008. Expedientes de los proyectos autorizados por el PRODEPLAN 1997-2008. Gerencia Nacional de Plantaciones. PRODEPLAN. Comisión Nacional Forestal. Jalapa, Ver., México. s/p. [ Links ]

Dickson, A., A. L. Leaf and J. F. Hosner. 1960. Quality appraisal of White spruce and White pine seedling stock in nurseries. The Forestry Chronicle 36(1): 10-13. [ Links ]

Jardel P., E. 2006. Viejos y nuevos problemas en el sector forestal en México. Instituto Manantlan de Ecología y Conservación de la Biodiversidad. Centro Universitario de la Costa Sur. Universidad de Guanajuato. Autlán de Navarro, Jal., México. 12 p. [ Links ]

López, J. y E. Piedrahita. 1998. Tratamientos pregerminativos aplicados a la semilla de Cedro negro (Juglans neotropica) para reducir su periodo de germinación. In: Salazar, R. (coord.). 1999. II Simposio sobre avances en la producción de semillas forestales en América Latina. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Turrialba, Costa Rica. pp. 191-200. [ Links ]

Luna V., I., O. Alcántara A., R. Contreras-Medina and A. Ponce V. 2006. Biogeography, current knowledge and conservation of threatened vascular plants characteristic of Mexican temperate forests. Biodiversity and Conservation 15(12): 3773-3799. [ Links ]

Narave, F. H. 1983. La familia Junglandaceae en Veracruz. Flora de Veracruz. Instituto de Ecología, A.C. Xalapa, Veracruz. 30 p. [ Links ]

Olivo, V. B y C. G. Buduba. 2006. Influencia de seis sustratos en el crecimiento de Pinus ponderosa producido en contenedores bajo condiciones de invernáculo. Bosque 27(3): 267-271. [ Links ]

Piedrahita C., E. 1998. Aumento del vigor en semillas de Pinus patula (Schlecht. y Cham.) por el efecto de osmoacondicionamiento. Crónica forestal y del Medio Ambiente 13(1):1-20. [ Links ]

Poulsen, K. M. 2000. Calidad de la semilla: concepto, medición y métodos para incrementar la calidad. In: Centro Agronómico de Investigación y Enseñanza (coord.). Técnicas para la germinación de semillas forestales. Proyecto de semillas Forestales. CATIE. Serie Técnica. Manual Técnico Núm. 39. Turrialba, Costa Rica. pp. 1-15. [ Links ]

Quintero-García, O. D. y S. Jaramillo-Villegas. 2012. Rescate y germinación in vitro de embriones inmaduros de cedro negro (Juglans neotropica Diels). Acta Agronómica 61(1): 52-60. [ Links ]

Rodríguez T., D. A. 2008. Indicadores de calidad de planta forestal. Universidad Autónoma Chapingo. Mundi Prensa. México, D.F., México. 156 p. [ Links ]

Rojas R., F. 1995. Almacenamiento y manejo del contenido de humedad en semillas forestales tropicales: principios y procedimientos. In: Centro Agronómico Tropical de Investigación y Enseñanza (ed.). Curso regional sobre recolecta y procesamiento de semillas forestales. CATIE. Turrialba, Costa Rica. pp. 57-66. [ Links ]

Rueda S., A., J. D. Benavides S., J. A. Prieto-Ruíz, J. T. Sáenz-Reyes, G. Orozco-Gutiérrez y A. Molina C. 2012. Calidad de planta producida en los viveros forestales de Jalisco. Revista Mexicana de Ciencias Forestales 3(14): 69-82. [ Links ]

Sáenz R., J. T., F. J. Villaseñor R., H. J. Muñoz F., A. Rueda S. y J. A. Prieto R. 2010. Calidad de planta en viveros forestales de clima templado en Michoacán. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Folleto Técnico Núm. 17. Sagarpa-Inifap-CIRPAC-Campo Experimental Uruapan. Uruapan, Mich., México. 48 p. [ Links ]

Salazar, R. y D. Boshier. 1989. Establecimiento y manejo de rodales semilleros de especies forestales prioritarias en América Central. Proyecto Cultivo de Árboles de Uso Múltiple (MADELEÑA). Madeleña/Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Serie técnica Núm.148. Turrialba, Costa Rica. 80 p. [ Links ]

Samaniego, R. C. 2002. Las fuentes semilleras y semillas forestales nativas en el austro ecuatoriano: participación social en el manejo. Fundación Ecológica Condesur. Loja, Ecuador. 14 p. [ Links ]

Sanjuanbenito, G. P. y M. D. Ramírez-Cárdenas. 2007. Fuentes semilleras de la comunidad de Madrid. Serie técnica de medio natural Núm 2. Madrid, España. 194 p. [ Links ]

Servicio Meteorológico Nacional. Normales Climatológicas 2014a. Estado de Veracruz. Estación Meteorológica Coatepec, Veracruz periodo 1981-2010. Conagua. http://smn.cna.gob.mx/index.php?option=com content&view=article&id=164:veracruz&catid=14&It emid=2 (14 de febrero de 2014). [ Links ]

Servicio Meteorológico Nacional. Estación Meteorológica. 2014b. Estado de Veracruz. Estación Meteorológica Naolinco de Victoria, Veracruz periodo 1981-2010. Conagua. http://smn.cna.gob.mx/index.php?option=com_content&view=article&id=164:veracruz&catid=14&Itemid=2 (14 de febrero de 2014). [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales (Semarnat). 2010. Norma Oficial Mexicana NOM-059-SEMARNAT. Protección ambiental-especies nativas de México de flora y fauna silvestres-categoría de riesgo y especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo. Diario Oficial de la Federación. 30 de diciembre de 2010. Segunda edición. México, D.F., México. 78 p. [ Links ]

Vahdati, K. and S. H. Hoseini. 2005. Introducing an innovative procedure for large commercial seed lots stratification in persian walnut. Acta Horticulturae 705: 355-357. [ Links ]

Received: October 16, 2015; Accepted: November 02, 2016

*Correo-e: eunii_14@hotmail.com

The authors declare no conflict of interest.

Eunice Ortiz Muñoz: field work, data analysis and writing of the paper; Celia Cecilia Acosta Hernández: support in field work, data analysis, leadership of the project, negotiation of financial resources, writing of the manuscript; Pascual Linares Márquez: writing and review of the manuscript; Zoylo Romero Morales: statistical analysis of the data; Virginia Rebolledo Camacho: advice on data analysis and writing of the mansucript.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons