SciELO - Scientific Electronic Library Online

 
vol.38 número3Promoción del crecimiento de Agave potatorum Zucc. por bacterias fijadoras de nitrógeno de vida libreRespuesta morfo-productiva de plantas de pimiento morrón biofertilizadas con Pseudomonas putida y dosis reducida de fertilizantes sintéticos en invernadero índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Terra Latinoamericana

versão On-line ISSN 2395-8030versão impressa ISSN 0187-5779

Terra Latinoam vol.38 no.3 Chapingo Jul./Set. 2020  Epub 12-Jan-2021

https://doi.org/10.28940/terra.v38i3.649 

Special number

Effect of biofertilizers and conservation agriculture in wheat production on Vertisol soil

Aurelio Báez-Pérez1   
http://orcid.org/0000-0002-4792-2817

Agustín Limón-Ortega2 
http://orcid.org/0000-0001-8020-1344

Cesar Eduardo Ramírez-Barrientos3 
http://orcid.org/0000-0002-5813-7179

Irma Agustina Ortega-Villalobos3 
http://orcid.org/0000-0001-9331-0064

Edgar Adrián Olivares-Arreola4 
http://orcid.org/0000-0001-6317-1622

1 Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP)-Campo Experimental Bajío. Carretera Celaya-San Miguel de Allende km 6.5. 38110 Celaya, Guanajuato, México.

2 Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP)-Campo Experimental Valle de México. Carretera los Reyes-Texcoco km 13.5. Coatlinchan. 56250 Texcoco, Estado de México, México.

3 Instituto Tecnológico del Valle de Morelia. Carretera Morelia-Salamanca km 6.5. 58100 Morelia, Michoacán, México.

4 Tecnológico Nacional de México. Carretera Celaya-Juventino Rosas km 8, Roque. 38110 Celaya, Guanajuato, México.


Summary:

This study performed two assays to analyze the effect of inoculating mycorrhizal fungi on wheat production during winter both by rotating crop and increasing fertilizer doses to implement agricultural conservation practices. The following treatments were established for the first assay: (1) wheat inoculation with mycorrhizal fungus Glomus mosseae without fertilizer; (2) application of 200 units of N ha-1 without inoculation; (3) inoculation + 100 units of N ha-1; (4) application of 100 units of N ha-1 without inoculation; (5) inoculation + 150 units of N ha-1; (6) application of 150 units of N without inoculation. The second assay assessed the response of wheat production to the two preceding crop rotations: maize‑wheat (G-G) and bean-wheat (L-G) and four increasing nitrogen fertilization doses: 0, 100, 150, and 200 units ha-1. With the inoculation of G. mosseae + 75% of nitrogen fertilization, wheat production had the greatest grain yield (5.6 Mg ha-1) and was 36% greater than the control group with the application of only 100% fertilizer without inoculant. Wheat inoculation without nitrogen fertilizer had the lowest production (2.6 Mg ha-1). On the other hand, wheat production with L-G rotation had a better response (R2 = 0.72) at increasing N doses where the greatest grain yield was obtained with 4.7 Mg ha-1 and only 150 units of N ha-1, which corresponded to 1 Mg ha-1 more compared with the maximum wheat production obtained in the G-G rotation with 2000 units of N ha-1. The use of inoculated biofertilizers, such as mycorrhizal fungi or by the effect of crop rotation with legumes, such as bean, requires supplementary N dosage to boost wheat production; however, it is feasible to decrease nitrogen fertilizer dosage to 25%.

Index words: biological nitrogen fixation; arbuscular mycorrhizal fungi; cultivation production; Triticum aestivum

Resumen:

Se realizaron dos ensayos para estudiar el efecto de la inoculación de hongos micorrízicos en la producción de trigo de invierno y la rotación de cultivos y dosis crecientes de fertilización, ambos aunados a la implementación de prácticas de agricultura de conservación. En el primero se establecieron los siguientes tratamientos: (1) Inoculación del trigo con los hongos micorrízicos: Glomus mosseae, sin fertilización; (2) aplicación de 200 unidades de N ha‑1, sin inoculación; (3) inoculación + 100 unidades de N ha-1; (4) aplicación de 100 unidades de N ha-1, sin inoculación; (5) inoculación + 150 unidades de N ha-1; (6) aplicación de 150 unidades de N, sin inoculación. En el segundo se evaluó la respuesta, en la producción de trigo, a dos rotaciones precedentes de cultivo: maíz-trigo (G-G) y frijol-trigo (L-G), y cuatro dosis crecientes de fertilización nitrogenada: 0, 100, 150 y 200 unidades ha-1. La producción de trigo, con la inoculación de G. mosseae + 75% de fertilización nitrogenada recomendada, tuvo el mayor rendimiento de grano (5.6 Mg ha-1), y fue 36 % mayor, respecto al testigo con aplicación de sólo 100% de la fertilización, sin inoculante. La inoculación de trigo, sin aplicación de fertilizante nitrogenado tuvo la producción más baja (2.6 Mg ha-1). Por otra parte, la producción de trigo con la rotación L-G tuvo una menor respuesta (R2 = 0.72) a las dosis crecientes de N, y fue donde se obtuvo el mayor rendimiento de grano, con 4.7 Mg ha-1, con sólo 150 unidades de N ha-1, que correspondió a 1 Mg ha-1 más, comparado con la máxima producción de trigo que se obtuvo en la rotación G-G, con 200 unidades de N ha-1. El uso de biofertilizantes inoculados, como los hongos micorrízicos, o por efecto de la rotación de cultivos con leguminosas, como frijol, requiere de dosis completarías de N para potenciar la producción de trigo; sin embargo, es factible disminuir en 25% la dosis de fertilización nitrogenada.

Palabras clave: fijación biológica del nitrógeno; hongos micorrízico arbusculares; producción de cultivos; Triticum aestivum

Introduction

Soil deterioration is a critical and growing problem caused by change of land use, bad management, and irrational exploitation of natural resources. More than 70% of soil in the country is estimated to show physical, chemical or biological degradation (Moncada et al., 2013; Bolaños-González et al., 2016). In El Bajío - an important region in the production of cereal and vegetables - intensive farming practices, irrational use of agricultural components, harvest waste withdrawal, and lack of organic manure addition has derived in growing soil deterioration, representing more than 65% of its surface (SEMARNAT, 2003). The main degradation problems of this natural resource are related with erosion, salinization, and decrease of organic reserves, jointly with compaction caused by excessive farming practices with agricultural machinery. The previous information necessarily implies physical degradation problems. Agricultural production systems influence significantly on the environment, activity and biodiversity of soil organisms. Disturbance and use of agricultural ingredients reduce drastically the number of the organism species that inhabit there. A terrestrial ecosystem, after change in soil use, experiments a drastic decrease in the number of plant species with different root systems, quantity and quality of its waste, deriving in a decrease in soil organic matter content, which at the same time limits habitat variety and food supply for soil organisms.

Based on the previous information, the need emerges to create technologies that induce increasing organic soil reserves, conserving its humidity, increasing efficiency in the use of chemical fertilizers, and decreasing soil and water contamination. The use of biofertilizers has been studied little as an option to improve soil condition and wheat production in El Bajío (Grageda-Cabrera et al., 2018). Microorganisms have a great diversity of mechanisms through symbiotic relationships in the rhizosphere that promote plant growth, among which the most important are increasing the use of nutrients and water, which is a function of arbuscular mycorrhizal fungi and incorporating nitrogen to the plant-soil system by bacterial biological fixation of the genus Rhizobium (Bloemberg and Lugtenberg, 2001). Nevertheless, it is important to consider how cultivation interacts with the different soil, climate, and agricultural management factors. To promote favorable conditions for the development of soil microorganisms that assure a continuous supply of organic matter, conservation agriculture is based on minimum farming practices, use of harvest waste on soil surface, and crop rotation (Verhulst et al., 2015). These practices offer a viable alternative to favor greater soil humidity conservation, increase biological activity of the microorganisms, and store organic reserves, specially C, an important element in improving physical (Mora et al., 1999), chemical, and biological soil properties (Lal, 2004), favoring adequate conditions for symbiotic relationships between plant roots and beneficial organisms, such as, nitrogen-fixing mycorrhiza and bacteria.

Therefore, the aim of this study was to assess, on the one hand, the effect of mycorrhizal inoculation in wheat production under a conservation agriculture system, and on the other hand, the effect of crop rotation (gramineae-legume) in grain yield of this same cereal.

Materials and Methods

Study site

The assay was performed in El Bajío Experimental Field, Celaya, Guanajuato, México, located at 20° 34' 44.9" N and 100° 49' 09.5" W, at an altitude of 1754 m. The climate of the region according to García (1987) is BS1hw(W)(e) q, that is, temperate with rain in summer, scarce winter precipitation, and cool winter. The average annual temperature is 20.6 °C, and annual average precipitation is 597 mm.

Soil sampling

Sampling was collected from soil composed of 22 subsamples of 0-5, 5-15, and 15-30 cm in depth at the end of each cultivation cycle. The samples were dried on the shade and at room temperature. They were sieved in 2-mm mesh, and chemical determinations were made, such as water pH ratio 1:2, electrical conductivity, nitrogen content by Kjeldahl method, extractable P by Olsen, organic matter, K content, exchange bases and minor elements. The laboratory methods used in such analyses were those described by Jackson (1976).

Implementing conservation agricultural practices

The plot had a surface of 1 hectare. During spring-summer 2010, soil was prepared with conventional farming practices (ploughing, raking, leveling, and furrowing), and maize variety “Jabalí” (Asgrow, Bayer AG, Leverkusen, DE) was sown to favor homogeneous condition of soil fertility and generate the necessary harvest waste to implement agricultural conservation practices; maize production fluctuated from 12‑14 Mg ha‑1, adding 13 Mg ha-1 of harvest waste used as mulch to soil surface. This cultivation system was implemented during the 2010-2011 autumn-winter cultivation cycle, sowing wheat variety Cortazar S94 (Solís-Moya et al., 1996), in 0.8 m double-row furrows; grain production reached 7 Mg ha-1, and approximately 6 Mg ha-1 of wheat waste used as mulch were distributed on soil surface. Subsequently, during the 2011 spring-summer cycle, the plot was divided by half: one to establish maize, variety “Jabalí” (Asgrow, Bayer AG, Leverkusen, DE), and the other one to establish bean, variety “Flor de Junio Marcela” (Castellanos-Ramos et al., 2003) to continue with the conservation agriculture system; maize produced 12 Mg ha-1 and bean 3 Mg ha-1, adding 11 and 2 Mg ha-1 of harvest waste on soil surface, respectively.

Experiment description

This study assessed cultivation rotation after implementing agricultural conservation practices during the 2011-2012 autumn-winter cycle. Wheat variety Cortazar S94 (Solís-Moya et al., 1996) was sown again in double-furrow on the harvest waste of previous cycles. Two experiments were assessed by randomized block design with four replicates. The first one assessed the inoculation effect of mycorrhizal fungi (Glomus mosseae) in wheat production, for which six treatments were established as described in Table 1. Innocuousness was performed three hours previous to sowing. The seed was mixed directly with adherent, an inoculant that contained 100 spores g-1 of soil, and 3 kg ha-1 were applied based on that reported by Grageda-Cabrera and González-Figueroa (2015), who recommended applying one kg of inoculant for each 50 kg of seeds. The second experiment consisted of assessing the effect of two crop rotations: gramineae-gramineae (wheat-maize G-G) and gramineae-legume (wheat-bean G-L), which correspond to the continuity of this study previously explained in implementing conservation agriculture. In each rotation, four levels of nitrogen fertilization (NF) were studied: 0, 100, 150 and 200 units of N ha-1 (Table 2). The experimental units, in both experiments, corresponded to four furrows 0.76 cm wide by 14 m long, randomly distributed in three blocks.

Table 1: Evaluation assay mycorrhizal treatments in wheat production. 

Treatments

Effect

N-P-K fertilization dosage

kg ha-1

1

I

0

2

FN (100%)

200-80-50

3

I + FN (50%)

100-80-50

4

FN (50%)

100-80-50

5

I + FN (75%)

150-80-50

6

FN (75%)

150-80-50

I = inoculation of mycorrhizal fungi Glomus mosseae; NF = nitrogen fertilization.

Table 2: Crop rotation assay of wheat production. 

Treatment

Cultivation rotation

N-P-K fertilization dosage

kg ha-1

1

Maize-wheat (G-G)

00-00-00

2

Maize-wheat (G-G)

100-80-50

3

Maize-wheat (G-G)

150-80-50

4

Maize-wheat (G-G)

200-80-50

5

Wheat-bean (G-L)

00-00-00

6

Wheat-bean (G-L)

100-80-50

7

Wheat-bean (G-L)

150-80-50

8

Wheat-bean (G-L)

200-80-50

G-G = gramineae-gramineae rotation; G-L = gramineae-legume rotation.

Statistical analysis

The mycorrhizal fungus inoculation assay was analyzed by a statistically randomized block design with four replicates. Tukey’s (α = 0.05) multiple comparison of means was performed. The crop rotation assay was assessed by a randomized block design experiment with 2 × 4 factorial arrangement: two-crop rotation levels of NF. The grain yield of the second assay was also analyzed by regression to make differences evident in slope and intercept by effect of growing N fertilization doses. The date of sowing was 28 December 2011. Irrigation was performed four times: at 0, 30, 57, and 88 days after sowing. The N-P-K fertilization sources were (NH4)2SO4 - Ca(H2PO4)2 -KCl. N was applied in two fractions, half during sowing and the other half during the second irrigation.

Agronomic parameters

The agronomic parameter assessment was performed starting from sample collection, one per experimental unit, 1 m in length per furrow width (0.76 m) where the following parameters were measured - number of plants and stems; final height of a 20-stem plant, measured from the base of the stem to the ear; grain weight, adjusted to 12% humidity; aerial biomass; 1000-grain weight, and harvest index.

Results and Discussion

Meteorological conditions

During cultivation development, starting the last week of February, temperatures higher than 30 °C at the shade were frequently recorded (Figure 1). March and April were very warm and the maximum temperatures reached 35 °C. Beyond this level of heat in the wheat flowering stage, it may cause crop damage and affect grain yield. According to Solís-Moya (2007), the incidence of high temperatures in El Bajío accelerated the bulking period in the phenological flowering stage, consequently, limiting grain yield, which is more likely in late sowing. On the other hand, precipitation was scarce during the cultivation period; rain added up scarcely 19 mm. Precipitation of more than 8 mm was recorded at the end of the cultivation stage.

Figure 1: Distribution of maximum, minimum temperature and precipitation during cultivation development of wheat assays in El Bajío, Celaya, Guanajuato, Mexico. 2011-2012 autumn-winter cultivation cycle. 

Soil analysis

The study was performed on vertisol-pelic soil according to the classification of the United States Department of Agriculture (USDA) (Grageda-Cabrera et al., 2004). Its texture type is clay with more than 60% of the fraction <2 μm, predominant expandable smectite clay, proper of this type of soils. The pH showed a decrease from slightly alkaline to neutral after the three cultivation cycles previous to this assessment (Table 3). Likewise, an increase was observed in the organic soil reserves in the first 5 cm in depth, specially carbon. The N-NO3 and N-NH4 concentration was greater where the legume was cultivated in stratus from 0-5 to 5-15 cm in depth after the third cultivation cycle at the end of the crop rotations gramineae-gramineae and gramineae-leguminosae; this result could have been attributed to the bacterial activity of the genus Rhizobium, which are associated symbiotically and naturally with legumes. The extractable P content was medium.

Table 3: Soil chemical characteristics after three continuous cultivation cycles under agricultural conservation practices. 

Cycle

Cultivation

Depth

pH water

CE

MO

CO

N total

P

K+

Ca++

Mg++

Na+

NO3

NH4

Fe

Cu

Mn

Zn

- NH4C2H3O2 1N pH 7 -

- KCl 2N -

DTPA§

cm

1:2

dS m-1

- - % - -

ppm

- - - - - cmol kg -1 - - - -

- - - - - - - - ppm - - - - - - - - -

PV-2010

Maize

0-5

7.8

0.34

1.80

0.85

0.12

23

2.0

10.2

7.2

1.0

10

5

15

1.8

68

0.2

PV-2010

5-15

7.5

0.28

1.62

0.85

0.12

23

2.0

10.2

7.2

1.0

10

5

15

1.8

68

0.2

PV-2010

15-30

7.5

0.25

1.47

0.85

0.12

23

2.0

10.2

7.2

1.0

10

5

15

1.8

68

0.2

OI-2011

Wheat

0-5

7.4

0.28

2.3

1.6

0.08

14

2.5

31.0

7.8

1.4

27

12

15

1.8

68

0.2

OI-2011

5-15

7.2

0.32

2.0

1.2

0.13

16

2.3

31.9

7.4

1.3

13

11

15

1.8

68

0.2

OI-2011

15-30

7.7

0.29

2.2

1.2

0.09

17

2.3

31.2

6.5

1.5

10

14

15

1.8

68

0.2

PV-2011

Maize

0-5

7.1

0.08

2.9

1.82

0.15

23

3.7

24.0

8.0

1.8

22

21

9

0.8

20

1.1

PV-2011

5-15

7.4

0.08

2.2

1.40

0.11

15

2.5

30.0

7.2

1.4

17

19

8

0.8

7

1.1

PV-2011

15-30

7.8

0.09

1.7

1.27

0.10

13

2.6

31.8

6.5

1.6

14

14

11

0.7

5

1.2

PV-2011

Bean

0-5

6.9

0.08

3.2

1.75

0.15

24

3.5

26.7

7.2

1.3

42

34

7

1.0

33

1.2

PV-2011

5-15

7.1

0.08

2.5

1.39

0.11

15

2.4

29.3

7.3

1.4

33

31

7

0.8

9

1.1

PV-2011

15-30

7.7

0.09

1.6

1.22

0.08

18

2.6

29.4

6.9

1.6

22

20

8

0.8

5

0.8

PV = cycle spring-summer; OI = cycle autumn-winter; MO = organic matter; CO = organic carbon. Kjeldahl method; Olsen method; § 0.005M, pH 7.3.

Arbuscular mycorrhizal fungus inoculation assay

The wheat yield components that evidenced significant differences (P < 0.05) by the effect of the mycorrhizal fungus inoculation in combination with the different N fertilization doses were: plant final height, grain yield, one-thousand grain weight, and aerial biomass. The lowest production level was observed in the treatment where only the mycorrhizal fungus strain was inoculated without applying chemical fertilizers (1) (Table 4). In contrast, the treatment with the application of 200 units of N ha-1 without inoculation, which corresponded to the control group with only chemical fertilization (2), had a greater production of 64% compared to treatment 1. The previous result implied that the biofertilizer on its own did not promote the capacity of the necessary N supply in the radicle system, which the cultivation required for a greater production. Even though some studies in the State of Guanajuato have shown that mycorrhizal fungus inoculation in wheat cultivation has increased the use of N by plants (Báez-Pérez et al., 2012; Grageda-Cabrera et al., 2018), it only happens if it is combined with a supplementary chemical fertilizer.

Table 4: Results of the yield components for wheat production in mycorrhizal fungus inoculation. 

Treatment and description

Number

IA

Height

Weight

Aerial biomass

Weight milligrams

HI

Plants

Stem

Grain

Straw

---- m-2----

cm

------Mg ha-1 ------

g

1.- I

83.6a*

355.0c

4.3b

60.3d

2.64e

6.01e

8.65e

46.69e

0.30a

2.- FN (100%)

84.8a

449.3ba

5.4a

80.5ba

4.10b

8.78b

12.88b

51.33b

0.32a

3.- I + FN (50%)

82.8a

438.5ba

5.3a

74.1c

3.60c

7.91b

11.51c

54.83c

0.31a

4.- FN (50%)

85.9a

435.3b

5.1a

79.4ba

2.96e

6.68d

9.64d

55.17c

0.31a

5.- I + FN (75%)

90.3a

485.3a

5.4a

76.0bc

5.58a

11.73a

17.31a

59.69a

0.32a

6.- FN (75%)

89.3a

474.6ba

5.3a

80.9a

3.79c

8.31cb

12.11c

53.31d

0.31a

Variación

8.8

8.9.9

9.6.9

5.1

5.7

5.9

5.2

4.8

2.3

I = inoculation; NF = nitrogen fertilization; SP = number of stems per plant; HI = harvest index. * Equal letters are statistically similar (P < 0.05).

The recommended NF dosage in El Bajío for wheat production, according to Solís-Moya et al. (2013) is 220 kg ha-1. The combined application of the biofertilizer with the chemical fertilizer showed a greater response in wheat production, as observed in the following contrast: grain yield in the inoculation treatment with G. mosseae combined with the application of 100 kg of N ha-1 (3) had 23% more production compared with the treatment where only this fertilization dosage was applied (4). The inoculation treatment with the mycorrhizal fungi and supplied with 150 units ha-1 of N (5) obtained the highest wheat yield and heaviest grains, double with respect to the treatment with inoculation only (1) and 68% more with respect to the treatment with only the application of this chemical fertilizer (6). Grain production evidently had a nitrogen fertilization dosage response; however, the combination with the arbuscular mycorrhizal fungi made it possible to decrease NF dosage without affecting grain yield, which could constitute production cost savings. These results agree with those reported by Aguilar-Carpio et al. (2017) and Grageda-Cabrera et al. (2018) in a similar study.

Crop rotation assay

Statistically significant differences (P < 0.05) were observed by the effect of crop rotation and NF dosage on the factors of prime importance, such as the interaction of both factors of study. Grain production in the rotation assay had different responses in function of the growing NF doses (Table 5). The G-G crop rotation was adjusted to a lineal model (R2 = 0.90) (Figure 2), observing a maximum production of 4 Mg ha-1, when 200 units of N ha-1 were applied, while the L-G crop rotation had a medium adjustment (R2 = 0.72). However, the maximum production was 4.7 Mg ha-1 with only 150 units of N ha-1, and it was significantly greater (P < 0.05) than G-G crop rotation (Figure 2). The previous results evidenced that the preceding bean cultivation provided nitrogen waste in the soil through the biological fixation that occurs naturally between bacteria of the genus Rhizobium and legumes, which could have been exploited by wheat cultivation. López-Alcocer et al. (2017) reported 20 strains of Rhizobium in El Bajío soils. The authors mentioned that symbiosis between bacteria of the genus Rhizobium and the legume, in this case bean, is considered a high efficiency process in atmospheric N biological fixation, that could provide up to 90% of nitrogen needs in plants. These results suggested that implementing crop rotation with legumes in production systems with agricultural conservation practices was feasible to decrease NF doses in cereal cultivation and reduce production cost. Furthermore, it was evident in the quantity of inorganic N (N-NO3 + NH4) assessed in soil after concluding the bean crop cycle (Table 3) where the N content was approximately 45% greater than that found in the soil where the G-G crop rotation system was located in the first 30 cm in depth.

Table 5: Results of the yield components for wheat production in the crop rotation assay. 

T

Rotation

N units

Number

SP

Plant height

Weight

Aerial biomass

One thousand grains

HI

Plants

Stem

Grain

Straw

kg ha-1

- - - m-2 - - -

cm

- - - - - Mg ha-1 - - - - -

g

1

G-G

0

83.6a*

355e

4.3b

60.31d

2.6f

6.0f

8.6f

46.7d

0.30a

2

100

85.9a

435b

5.1a

79.36c

3.0e

6.7e

9.6e

55.2b

0.31a

3

150

89.3a

475a

5.3a

80.85b

3.8c

8.3c

12.1c

53.3c

0.31a

4

200

84.8a

449c

5.4a

80.51b

4.1b

8.8a

12.9b

51.3bc

0.32a

Variation (%)

10.1

12.8

12.3

12.9

18.5

16.4

16.8

11.8

4.6

5

L-G

0

77.3a

386d

5.1a

73.31c

3.2d

6.9d

10.1d

58.6a

0.32a

6

100

86.2a

480a

5.6a

83.96a

3.2d

7.0d

10.2d

52.5bc

0.31a

7

150

87.3a

447b

5.1a

83.96a

4.7a

10.2a

14.9a

54.6b

0.31a

8

200

85.8a

471a

5.5a

79.60c

3.8c

8.5b

12.3c

56.6ba

0.31a

Variation (%)

9.0

10.7

12.5

8.4

17.9

17.8

17.7

5.9

3.5

T = treatment; G-G = maize-wheat; L-G = bean-wheat. SP = number of stems per plant; HI = harvest index; N = nitrogen. * Equal letters are statistically similar (P < 0.05).

Figure 2: Relationship between wheat grain yield and fertilizer dosage in crop rotation assay. 

Soil coverage with harvest waste -basic component of conservation agriculture practices- favors immobilization by the N applied with the chemical fertilizer (Grahmann et al., 2013), specially during the second fertilization when it stays in direct contact with the organic material because tillage is not performed and N cannot stay underground. Thus, microbial biomass uses part of the N supplied for its metabolism during organic matter decomposition. El N waste left after being biologically fixed by bacteria of the genus Rhizobium in the legume rhizosphere is available for the next crop and out of the reach of the microorganisms that act on agricultural harvest found on soil surface.

Conclusions

- Innocuousness of the arbuscular mycorrhizal fungus Glomus mosseae in wheat cultivation combined with 75% of the recommended NF, produced a yield of 36%, greater than the control group with the application of 100% of the fertilization without inoculant. Wheat inoculation without NF was not sufficient for the N supply the crop requires for a profitable production in Vertisol soils.

- Wheat production had the greatest response with L-G crop rotation, combined with the application of only 75% of the recommended NF, with a grain yield of 15%, greater than with the G-G crop rotation with 100% fertilization. The availability of inorganic N waste was estimated in the soil stratus of 30 cm in depth by effect of the bean crop rotation approximately 45% greater than the one found with the G-G crop rotation.

Acknowledgments

The authors are grateful to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) for funding this study through the Project: Mejoramiento de la fertilidad del suelo y aprovechamiento del agua por efecto de prácticas de manejo agronómico; to Diana Fischer for translation-editorial services.

REFERENCES

Aguilar-Carpio, C., J. A. Salvador Escalante-Estrada, I. Aguilar-Mariscal y A. Pérez-Ramírez. 2017. Crecimiento, rendimiento y rentabilidad del maíz VS-535 en función del biofertilizante y nitrógeno. Ecosist. Recur. Agropec. 4: 475-483. doi: http://dx.doi.org/10.19136/era.a4n12.1000. [ Links ]

Báez-Pérez, A., F. Bahena-Juárez, J. de J. Velázquez-García, A. Loza Peña y E. Huerta Martínez. 2012. Efecto de las micorrizas en la producción de trigo bajo labranza de conservación en El Bajío. Folleto técnico no. 12. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. México, D. F. ISBN: 978-607-425-882-0. [ Links ]

Bloemberg, G. V. and B. J. Lugtenberg. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350. doi: http://dx.doi.org/10.1016/s1369-5266(00)00183-7. [ Links ]

Bolaños González, M. A., F. Paz-Pellat, C. O. Cruz-Gaistardo, J. A. Argumedo Espinoza, V. M. Romero Benítez y J. C. de la Cruz-Cabrera. 2016. Mapa de erosión de los suelos de México y posibles implicaciones en el almacenamiento de carbono orgánico del suelo. Terra Latinoamericana 34: 271-288. [ Links ]

Castellanos-Ramos, J. Z., S. H. Guzmán-Maldonado, J. A. Acosta-Gallegos, and J. D. Kelly. 2003. Registration of ‘Flor de Junio Marcela’ bean cultivar. Crop Sci. 43: 1121-1122. doi: https://doi.org/10.2135/cropsci2003.1121. [ Links ]

García, E. 1987. Modificaciones al sistema de clasificación climática de Köppen. Serie de libros no. 6. Instituto de Geografía, UNAM. México, D. F. [ Links ]

Grageda-Cabrera, O. A. y S. S. González-Figueroa. 2015. Micorriza INIFAPMR. Todo lo que usted desea saper. Desplegable para productores no. 21. INIFAP. México, D. F. [ Links ]

Grageda-Cabrera, O. A. , T. Medina-Cázares, J. L. Aguilar-Acuña, M. Hernández-Martínez, E. Solís-Moya, G. A. Aguado-Santacruz y J. J. Peña-Cabriales. 2004. Pérdidas de nitrógeno por emisión de N2 y N2O en diferentes sistemas de manejo y con tres fuentes nitrogenadas. Agrociencia 38: 625-633. [ Links ]

Grageda-Cabrera, O. A. , S. Santamaría-González-Figueroa, J. A. Vera-Nuñez, J. F. Aguirre-Medina yJ. J. Peña-Cabriales . 2018. Efecto de los biofertilizantes sobre la asimilación de nitrógeno por el cultivo de trigo. Rev. Mex. Cienc. Agríc. 9: 281-289. doi: https://doi.org/10.29312/remexca.v9i2.1071. [ Links ]

Grahmann, K., N. Verhulst, A. Buerkert, I. Ortiz-Monasterio, and B. Govaerts. 2013. Nitrogen use efficiency and optimization of nitrogen fertilization in conservation agriculture. CAB Reviews 8: 1-19. doi: http://dx.doi.org/10.1079/pavsnnr20138053. [ Links ]

Jackson, M. L. 1976. Análisis químico de suelos. Omega. Barcelona, España. ISBN10: 8428202613 / ISBN13: 9788428202619. [ Links ]

Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623-1627. doi: 10.1126/science.1097396. [ Links ]

López-Alcocer, J. J., R. Lépiz-Ildefonso, D. R. González-Eguiarte, R. Rodríguez-Macias, E. López-Alcocer y V. Olalde-Portugal. 2017. Caracterización morfológica y bioquímica de cepas de Rhizobium colectadas en frijol común silvestre y domesticado. Rev. Fitotec. Mex. 40: 73-81. doi: https://doi.org/10.35196/rfm.2017.1.73-81. [ Links ]

Moncada-de la Fuente, J., M. Anaya-Garduño, C. A. Ortíz-Solorio, P. Sánchez-García y J. Chacón-Rodríguez. 2013. Suelo protejamos el suelo que nos da vida. Colegio de Postgraduados. Montecillo, Texcoco, Estado de México. [ Links ]

Mora-Gutiérrez, M., V. M. Ordaz-Chaparro, J. Z. Castellanos, A. Aguilar-Satelises, F. Gavi-Reyes y V. Volke. 1999. Sistemas de labranza y sus efectos en algunas propiedades físicas en un vertisol, después de cuatro años de manejo. Terra 19: 67-74. [ Links ]

SEMARNAT (Secretaría del Medio Ambiente y Recursos Naturales). 2003. Evaluación de la degradación del suelo causada por el hombre en la República Mexicana, escala 1:250 000. Memoria nacional 2001-2002. Colegio de Posgraduados. Montecillo, Texcoco, México. [ Links ]

Solís-Moya, E., A. Salazar-Zazueta y J. Narro-Sánchez. 1996. Cortazar S94 nueva variedad de trigo harinero para el Bajío. Folleto técnico no. 2. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Bajío. Celaya, Guanajuato, México. [ Links ]

Solís-Moya, E. , S. A. Ríos R., H. García N., A. Arévalo V., O. A. Grageda C., M. A. Vuelvas C., J. G. Días de León T., J. L. Aguilar A., A. Ramírez R., J. Narro S., R. Bujanos M., A. Marín J. y R. Peña M. 2007. Producción de trigo de riego en el Bajío. Folleto Técnico Núm. 3. INIFAP, Campo Experimental Bajío. Celaya, Guanajuato, México. [ Links ]

Solís-Moya, E. , A. Ramírez-Ramírez, L. Ledesma-Ramírez y M. L. de la Cruz-González. 2013. Guía para la producción de trigo. pp: 113-119. In: A. Mandujano-Bueno, R. Paredes-Melesio, M. P. Alamilla-Gómez y J. F. Buenrostro-Rodríguez (eds.). Guía para la producción de maíz, frijol, trigo y sorgo en Guanajuato. Libro técnico no. 4. INIFAP-Campo Experimental Bajío. Celaya, Guanajuato, México. [ Links ]

Verhulst, N., I. François y B. Govaerts. 2015. Agricultura de conservación, ¿mejora la calidad del suelo a fin de obtener sistemas de producción sustentables? CIMMYT-MasAgro. El Batán, Texcoco, Estado de México. [ Links ]

Recommended citation:

Báez-Pérez, A., A. Limón-Ortega, C. E. Ramírez-Barrientos, I. A. Ortega-Villalobos y E. A. Olivares Arreola. 2020. Efecto de biofertizantes y agricultura de conservación en la producción de trigo en un Vertisol. Terra Latinoamericana Número Especial 38-3: 569-581. DOI: https://doi.org/10.28940/terra.v38i3.649

Received: July 07, 2019; Accepted: January 06, 2020

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons