SciELO - Scientific Electronic Library Online

 
vol.38 número3Efecto de ácidos húmicos, micorrizas y quitosano en indicadores del crecimiento de dos cultivares de tomate (Solanum lycopersicum L.)Crecimiento de girasol ornamental en maceta a nivel de campo por efecto de hongos micorrízicos arbusculares índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Terra Latinoamericana

versão On-line ISSN 2395-8030versão impressa ISSN 0187-5779

Terra Latinoam vol.38 no.3 Chapingo Jul./Set. 2020  Epub 12-Jan-2021

https://doi.org/10.28940/terra.v38i3.672 

Special number

Bioproducts in the growth and yield of Phaseolus vulgaris L. var. Delicia 364

Yonger Tamayo-Aguilar1 
http://orcid.org/0000-0002-5814-1231

Porfirio Juárez-López1   
http://orcid.org/0000-0002-4241-1110

Wendy Capdevila-Bueno2 
http://orcid.org/0000-0003-2997-6982

José Lescaille-Acosta3 
http://orcid.org/0000-0002-3582-0485

Elein Terry-Alfonso4 
http://orcid.org/0000-0002-5996-2226

1Posgrado en Ciencias Agropecuarias y Desarrollo Rural, Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos. Avenida Universidad 1001. 62210 Cuernavaca, Morelos, México.

2Instituto de Suelos. Unidad de Ciencia y Tecnología de Base (UCTB). Guantánamo. 95100 Guantánamo, Cuba.

3Facultad Agroforestal, Universidad de Guantánamo. Carretera km 6.5, El Salvador. 95100 El Salvador, Guantánamo, Cuba.

4Instituto Nacional de Ciencias Agrícolas (INCA). Carretera a Tapaste km 3.5. 32700. San José de las Lajas, Mayabeque, Cuba.


Summary:

Current food production systems require the use of alternatives with ecological and affordable approaches, among which the use of bioproducts generated by the action of microorganisms that act on plant nutrition, growth and development stands out. The objective of this work was to evaluate the response of Phaseolus vulgaris L. var. Delicia 364 to the application of bioproducts (arbuscular mycorrhizal fungi and Spiruvins) in plastic pots with a volume of 44 L capacity. The bioproduct Azofert was used in this experiment. The experiment was conducted in the municipality of El Salvador, Guantanamo province, Cuba. The treatments were distributed in a completely randomized design: (T1) Azofert without AMF (control group); (T2) Azofert without AMF + 2 L ha-1 of Spiruvins; (T3) Azofert + Rhizophagus irregularis; (T4) Azofert + Glomus cubense; (T5) Azofert + Funneliformis mosseae; (T6) Azofert + Rhizophagus irregularis + 2 L ha-1 of Spiruvins; (T7) Azofert + Glomus cubense + 2 L ha-1 of Spiruvins; (T8) Azofert + Funneliformis mosseae + 2 L ha-1 of Spiruvins. Plant height, stem diameter, number of pods, number of grains per pod, weight of 100 grains and yield were evaluated. In addition, mycorrhizal functioning was evaluated by mycorrhizal colonization and visual density. The results obtained showed that the application of bioproducts (arbuscular mycorrhizal fungi and Spiruvins) increased the growth and yield of the bean crop var. Delicia 364; in addition, with the combination Azofert + Rhizophagus irregularis + Spiruvins the highest yield was obtained with 2.11 Mg ha-1, which represents 37.9% more than the national average.

Index words: biofertilizers; inoculation; yield Spiruvins

Resumen:

Los actuales sistemas de producción de alimentos requieren el empleo de alternativas con enfoques ecológicos y asequibles, entre los que se destaca el uso de los bioproductos generados por la acción de microorganismos que actúan en la nutrición, crecimiento y desarrollo de las plantas. El objetivo de este trabajo fue evaluar la respuesta de Phaseolus vulgaris L. var. Delicia 364 a la aplicación de bioproductos (hongos micorrícicos arbusculares y Spiruvinas) en macetas de plástico con volumen de 44 L de capacidad. En el presente experimento se utilizó el bioproducto Azofert. El experimento se realizó en el municipio El Salvador, provincia Guantánamo, Cuba. Los tratamientos se distribuyeron en un diseño completamente al azar: (T1) Azofert sin HMA (testigo); (T2) Azofert sin HMA + 2 L ha-1 de Spiruvinas; (T3) Azofert + Rhizophagus irregularis; (T4) Azofert + Glomus cubense; (T5) Azofert + Funneliformis mosseae; (T6) Azofert + Rhizophagus irregularis + 2 L ha-1 de Spiruvinas; (T7) Azofert + Glomus cubense + 2 L ha-1 de Spiruvinas; (T8) Azofert + Funneliformis mosseae + 2 L ha-1 de Spiruvinas. Se evaluó: altura de las plantas, diámetro del tallo, número de vainas, número de granos por vainas, peso de 100 granos y rendimiento. Además, se evaluó el funcionamiento micorrícico mediante la colonización micorrícica y la densidad visual. Los resultados mostraron que la aplicación de bioproductos (hongos micorrícicos arbusculares y Spiruvinas) incrementaron el crecimiento y el rendimiento del cultivo de frijol var. Delicia 364; asimismo, con la combinación Azofert + Rhizophagus irregularis + Spiruvinas se obtuvo el mayor rendimiento con 2.11 Mg ha-1, lo que representa 37.9% más que el promedio nacional.

Palabras clave: biofertilizantes; inoculación; rendimiento Spiruvinas

Introduction

The bean (Phaseolus vulgaris L.), species of the genus Phaseolus, is the most cultivated in the tropics and subtropics of Latin America, the Caribbean, and Africa. It is placed among the five cultivations with greater surface dedicated to agriculture in Latin American countries, mainly because it is a source of proteins, vitamins, and minerals (Romero, 2016; Colás et al. 2018).

In Cuba, the Ministry of Agriculture has prioritized bean sowing because of the high consumption demand and its nutritional properties (Pérez et al., 2006). However, the national production does not satisfy the population demand because of the need of importing 14 400 t of this grain annually (Hernández, 2016; ONEI, 2018).

In this context, one of the main challenges of agriculture nowadays is ecological and attainable food production for the population (Marín et al., 2013). Bioproducts with beneficial effects, such as biofertilizers and biostimulants that allow developing a feasible and ecological agriculture are among the alternatives for cultivation management of sustainable nutrition. Those that stand out are arbuscular mycorrhizal fungi (AMF) and rhizobia, which have a symbiotic association with the plant and generate a positive nutrient exchange. In this exchange, the plants supply carbohydrates to the symbionts and they, in turn, favor nutrient and water absorption and translocation, for example, phosphorus, zinc, and copper, biological nitrogen fixation, protection against pathogens in roots, plant tolerance to different biotic and abiotic stresses (Angulo et al., 2018; Wilches-Ortiz et al., 2019).

Other biological products used in agriculture are Spiruvins that act as plant growth biostimulants, which are obtained from spirulina and vinasse, humid biomass with active compounds that intervene on plant physiology and promote flowering and fruit development (Tamayo-Aguilar et al., 2019).

Therefore, the objective of this study was to assess the effect of bioproducts (arbuscular mycorrhizal fungi and Spiruvins) in crop growth and yield of Phaseolus vulgaris L. var. Delicia 364.

Materials and Methods

This research was developed in the experimental unit of Universidad de Guantánamo, located at 20° 17’ 44. 515” N and 75° 21’ 17.218” W, in the Municipality El Salvador, Guantánamo Province, Cuba. From March to June 2017; 44 L plastic pots were used with carbonated loose

Sialitic Cambisol soil type (Hernández et al.), equivalent to the Cambisols of the World Reference Base (IUSS Working Group WRB, 2015), and cattle manure as organic matter source in a ratio of soil-organic matter 3:1.

Soil chemical properties (Table 1) were determined based on the Cuban Norms (NC) established: pH, by the potentiometric method (ONN-NC-ISO 10390, 1999); organic matter (MO), Walkley-Black (ONN-NC-51, 1999) method; P determination, by the method of Machiguín (ONN-NC-52, 1999); exchangeable cations, with ammonium acetate 1 M and pH 7 in the ratio soil:1:5 (ONN-NC-65, 2000) solution.

Table 1: Soil chemical analysis used in Phaseolus vulgaris L. var. Delicia 364 bioproduct evaluation in Guantánamo, Cuba. 

pH

OM

P2O5

Na+

K+

Ca2+

Mg2+

KCI

%

mg kg-1

-------------- mol kg-1 --------------

7.03

3.05

22.16

0.56

0.61

40.0

3.20

OM = organic matter.

The soil showed a slightly alkaline pH, average MO values, and available phosphorus. With respect to exchangeable cations, Ca+2 showed high values while Mg+2 and K+ and Na+ showed permissible intervals for the crop and the microbial activity according to Rivera et al. (2015).

Treatments and crop establishment

A completely randomized design was used with eight treatments and three replicates to evaluate the arbuscular mycorrhizal fungus (AMF) strains and Spiruvin leaf bioproducts. Bean seeds (n = 10) inoculated with rhizobia (Azofert(, Mayabeque, Cuba) and AMF per pot were sown for a total of 720 plants in 72 pots. The AMF strains (Rhizophagus irregularis, Glomus cubense and Funneliformis mosseae) and Spiruvins were studied with a dose of 2 L ha-1 composed of seven amino acids, 11 types of vitamins and oligopeptides besides a control group with the application of Azofert as indicated by the technical norms of bean cultivation in Cuba.

The treatments were (T1) Azofert without AMF (control group); (T2) Azofert without AMF + 2 L ha-1 of Spiruvins; (T3) Azofert + Rhizophagus irregularis; (T4) Azofert + Glomus cubense; (T5) Azofert + Funneliformis mosseae; (T6) Azofert + Rhizophagus irregularis + 2 L ha-1 of Spiruvins; (T7) Azofert + Glomus cubense + 2 L ha-1 of Spiruvins; (T8) Azofert + Funneliformis mosseae + 2 L ha-1 of Spiruvins.

The AMF strains were obtained from the Arbuscular Mycorrhizal Fungus collection of the Plant Biofertilizer and Nutrition Department of the Instituto Nacional de Ciencias Agrícolas (INCA), based on the certified EcoMic(, (Mayabeque, CU) product, with 40 spores/g of inoculant and 50% of non-toxic and pathogen-free radicle colonization. Additionally, the inoculant Azofert (Mayabeque, CU) was used with a concentration of 1 × 107 - 1 × 108 UFC mL‑1, containing native rhizobium species that induce high concentrations of nodulation factors in bacteria, favoring BNF. Azofert (Mayabeque, CU) belongs to the Collection of Bioproducts of the Plant Biochemistry and Physiology Department at INCA.

The biofertilizer inoculation (rhizobia and AMF) and the combined use of the AMF strains with the leaf biostimulant (Spiruvin) are described as follows. The biofertilizers were applied previous to sowing following the cover crop seeding method (Fernández et al., 2000). A dose of 0.045 kg ha-1 of EcoMic(, (Mayabeque, CU), equivalent to 10% of seed weight was used. Firstly, the seeds were soaked with the bacterial (Azofert, Mayabeque, CU) inoculant for three min; after that, the seeds were covered completely with the AMF strains, dried at the shade for five min, and subsequently proceeded to sowing. As mentioned previously, the Spiruvin biostimulant originates from the humid biomass of Spirulins and vinasse, which are natural products; through their bioactive compounds, they stimulate the assimilation of the macro-elements provided to the soil (by the radicle), as well as to the plant natural capacity to produce its own hormones, enzymes, and other products based on amino acids. Then, at 15 and 30 days after sowing (DAS) and the flowering stage, a dose of 2 L ha-1 was applied to the leaves with a spray model Batlle 730061 UNID (Barcelona, ES) of 400 mL, which guaranteed application evenness on all the plants.

Variables assessed

A total of 15 plants per treatment were selected, and plant growth variables were measured as follows: plant height and stem diameter (cm) at 15, 30 and 45 DAS. The yield components were number of pods and number of grains per pod, weight of 100 grains (g) and yield (Mg ha-1), which were determined at the moment of harvesting. Additionally, the mycorrhizal function variables, colonization and visual density expressed in %, were assessed. From the roots sampled, 200 mg were weighed and stained following the method of Phillips and Hayman (1970). The mycorrhizal colonization percentage was quantified with the intercept method (Giovannetti and Mosse, 1980). Visual density was determined following the methodology described by Trouvelot et al. (1986).

Statistical analysis

The data were subjected to an analysis of variance (ANOVA). When significant differences occurred among treatments, Tukey’s (P ≤ 0.05) range test was performed with Statgraphics Centurión XVI statistical program.

Results and Discussion

Plant height

Plant height increased with the inoculation of the AMF strains, which were applied by covering the seeds; likewise, height increased with the combined AMF and Spiruvin treatments at 30 and 45 das (P ≤ 0.05), highlighting the combination of the Rhizophagus irregularis (Table 2). This response could have been attributed to the effect of the bioproducts, which increased the metabolic functions related with plant growth and development. This positive effect could have been related to AMF and the biostimulants with bioactive compounds that promote mechanisms of nutrient absorption and translocation in plants (Abdel-Fattah et al., 2016; Martínez-Sánchez et al., 2017).

Table 2: Effect of bioproducts on Phaseolus vulgaris L. var. Delicia 364 height in Guantánamo, Cuba. 

Treatment

Plant height

Days

15

30

45

-------- cm --------

Azofert without HMA (control)

4.16 f

6.11 g

8.76 e

Azofert without HMA + 2 L ha-1 of Spiruvinas

5.13 de

7.28 e

9.97 d

Azofert + Rhizophagus irregularis

5.51 cd

7.70 d

10.87 c

Azofert + Glomus cubense

4.91 e

7.06 ef

10.18 d

Azofert + Funneliformis mosseae

5.10 de

6.80 f

9.93 d

Azofert + Rhizophagus irregularis + 2 L ha-1 of Spiruvinas

6.41 a

9.67 a

14.91 a

Azofert + Glomus cubense + 2 L ha-1 of Spiruvinas

6.03 ab

9.03 b

14.10 b

Azofert + Funneliformis mosseae + 2 L ha-1 of Spiruvinas

5.75 bc

8.39 c

14.00 b

Es χ

0.15*

0.12*

0.09*

Different letters in the same column indicate significant differences according to Tukey’s (P ≤ 0.05) multiple range test. AMF = arbuscular mycorrhizal fungi. Es χ = standard error of the media.

With respect to the previous information, Colás-Sánchez et al. (2018) reported a similar effect to that in this study since the bean plants with arbuscular mycorrhizal fungus and rhizobium inoculation had a height increase over 50% at 21 das compared with the control group. Likewise, Pérez-Peralta et al. (2019) indicated that the previous rhizobium inoculation in bean seeds increased the plant aerial biomass. On the other hand, Rivera et al. (2015) obtained a significant increase in bean plant growth with AMF + Azofert inoculation.

Stem diameter

In stem diameter (Table 3), differences (P ≤ 0.05) were observed in the combined treatments (AMF with Spiruvins). A greater efficiency was observed with the Rhizophagus irregularis strain at 15, 30 and 45 DAS. The positive results in the combined treatments could be inferred to the effect of the biodproducts on the plant physiological processes and to a greater nutrient absorption by plant roots (Tamayo-Aguilar et al., 2019).

Table 3: Effect of bioproducts on Phaseolus vulgaris L. var. Delicia 364 stem diameter, in Guantánamo, Cuba. 

Treatment

Plant height

Days

15

30

45

- - - - - - - - cm - - - - - - - -

Azofert without HMA (control)

0.31 e

0.95 g

2.65 g

Azofert without HMA + 2 L ha-1 of Spiruvinas

1.00 d

1.14 ef

2.86 f

Azofert + Rhizophagus irregularis

1.00 d

1.52 d

3.27 d

Azofert + Glomus cubense

1.00 d

1.20 e

3.11 e

Azofert + Funneliformis mosseae

0.85 d

1.11 f

3.08 e

Azofert + Rhizophagus irregularis + 2 L ha-1 of Spiruvinas

2.00 a

2.64 a

4.78 a

Azofert + Glomus cubense + 2 L ha-1 of Spiruvinas

1.71 b

2.52 b

4.48 b

Azofert + Funneliformis mosseae + 2 L ha-1 of Spiruvinas

1.44 c

2.33 c

4.17 c

Es χ

0.07*

0.02*

0.04*

Different letters in the same column indicate significant differences according to Tukey’s (P ≤ 0.05) multiple range test. AMF = arbuscular mycorrhizal fungi; Es χ = standard error of the media.

The results of this study agree with those of Aguirre-Medina et al. (2019), who reported significant differences in stem diameter of Tabebuia donnell-smithii by combining AMF strains and cattle manure in greenhouse conditions. Nevertheless, they did not find statistical differences by the effect of mycorrhizal fungi without cattle manure in the first plant stages. On the other hand, Mujica et al. (2017) reported an increase in stem diameter in the crop of Arachis hypogaea with the combined use of biofertilizers compared with the control group when they assessed the effect of AMF and plant growth promoter bacteria.

Yield components

Differences (P ≤ 0.05) were observed in the yield components, number of pods and number of grains per pod and weight of 1000 grains with the combination of the bioproducts (Table 4). These results agree with those reported by Calero et al. (2019) who also found differences in the yield components of bean crop with the combined application of efficient microorganisms and Rhizobium.

Table 4: Effect of bioproducts on Phaseolus vulgaris L. var. Delicia 364 yield components, in Guantánamo, Cuba. 

Treatment

Pods per plant

Grains per pod

Weight of 100 grains

g

Azofert without HMA (control)

23.01 g

3.33 f

11.26 f

Azofert without HMA + 2 L ha-1 of Spiruvinas

28.04 f

4.33 e

13.62 e

Azofert + Rhizophagus irregularis

32.05 d

5.33 d

19.96 c

Azofert + Glomus cubense

30.33 de

5.53 d

17.59 d

Azofert + Funneliformis mosseae

30.0 de

5.04 d

19.21 c

Azofert + Rhizophagus irregularis + 2 L ha-1 of Spiruvinas

51.33 a

8.22 a

27.23 a

Azofert + Glomus cubense + 2 L ha-1 of Spiruvinas

44.5 b

6.99 b

26.48 ab

Azofert + Funneliformis mosseae + 2 L ha-1 of Spiruvinas

41.0 c

6.28 c

25.77 b

Es χ

0.97*

0.21*

0.44*

Different letters in the same column indicate significant differences according to Tukey’s (P ≤ 0.05) multiple range test. AMF = arbuscular mycorrhizal fungi. Es χ = standard error of the media.

In addition to the previous information, Tamayo-Aguilar et al. (2019) reported that the combined used of bioproducts in Vigna unguiculata (L.) cultivation increased with respect to the treatments applied individually. Colás-Sánchez et al. (2018) found that the yield components increased compared with the control group when they evaluated the effect of biofertilization with the previous inoculation of arbuscular mycorrhizal fungus and rhizobium strains.

Bean yield

Differences (P ≤ 0.05) were observed in yield (Table 5). The combinations of the bioproducts AMF + Spiruvins increased bean yield. The greatest yield was 2.11 Mg ha-1, obtained with R. irregularis combined with Spiruvin leaf bioproduct. This response may have been attributed to the specificity of this strain with the type of soil used, which favored the efficiency of the mycorrhizal inoculation. It is worth to highlight that the yield previously mentioned, obtained with the combination Azofert + R. irregularis + Spiruvinas, represented 37.9%, which was more than the national yield. These results showed that R. irregularis was the ideal AMF strain to increase growth and yield in the conditions of this study.

Table 5: Effect of bioproducts on Phaseolus vulgaris L. var. Delicia 364 crop yield, in Guantánamo, Cuba. 

Treatment

Yield

Mg ha-1

Azofert without HMA (control)

0.89 f

Azofert without HMA + 2 L ha-1 of Spiruvinas

0.98 e

Azofert + Rhizophagus irregularis

1.12 d

Azofert + Glomus cubense

1.09 d

Azofert + Funneliformis mosseae

1.08 d

Azofert + Rhizophagus irregularis + 2 L ha-1 of Spiruvinas

2.11 a

Azofert + Glomus cubense + 2 L ha-1 of Spiruvinas

1.57 b

Azofert + Funneliformis mosseae + 2 L ha-1 of Spiruvinas

1.45 c

Es χ

0.01*

Different letters in the same column indicate significant differences according to Tukey’s (P ≤ 0.05) multiple range test. AMF = arbuscular mycorrhizal fungi. Es χ = standard error of the media.

With the results obtained, a certain functional compatibility may be inferred among the plant, substrate, biostimulant, and AMF, which favored growth and yield. In this sense, Tamayo and Bernal (2018) reported bean yield increase with the combined inoculations of mycorrhizal fungi and rhizobia; likewise, they concluded that the combined actions of the bioproducts had a synergic effect in plant growth. The results of this study agree with that indicated by Llanes et al. (2019) with respect to the use of bioproducts and their benefits in Cuban agriculture since the majority of the producers use biostimulants and biofertilizers jointly with cattle manure for crop nutrition.

Fungal function

The mycorrhizal function in bean cultivation was observed in mycorrhizal colonization and visual density (Table 6). The mycorrhizal activity increased in the combined treatments with AMF and Spiruvin with differences (P ≤ 0.05) among them. The R. irregularis strain was again more efficient than the other commercial strains. These results might have been due to the plant response to assimilate efficiently the combined bioproducts related to the mycorrhizal symbiotic process (Tamayo-Aguilar et al., 2019). It is worth to point out that the presence of visual density and colonization found in the treatments without AMF could be the expression of some AMF residents in the soil used to fill the pots; however, its mycorrhizal effect was less than with the commercial strains studied.

Table 6: Fungal bioproduct indicators in Phaseolus vulgaris L. Var. Delicia 364 roots, in Guantánamo, Cuba. 

Treatment

Mycorrhizal colonization

Visual density

- - - - - - % - - - - - -

Azofert without HMA (control)

45.56 e

2.52 e

Azofert without HMA + 2 L ha-1 of Spiruvinas

48.91 d

2.72 e

Azofert + Rhizophagus irregularis

53.02 c

3.93 bc

Azofert + Glomus cubense

52.85 c

3.76 c

Azofert + Funneliformis mosseae

50.41 d

3.24 d

Azofert + Rhizophagus irregularis + 2 L ha-1 of Spiruvinas

62.29 a

5.17 a

Azofert + Glomus cubense + 2 L ha-1 of Spiruvinas

58.51 b

4.16 b

Azofert + Funneliformis mosseae + 2 L ha-1 of Spiruvinas

58.32 b

3.86 bc

Es χ

0.71*

0.11*

Different letters in the same column indicate significant differences according to Tukey’s (P ≤ 0.05) multiple range test. AMF = arbuscular mycorrhizal fungi. Es χ = standard error of the media.

According to Williams et al. (2017) the establishment of mycorrhizal symbiosis depended on the interaction of biotic and abiotic factors, which should be considered in the agronomic cultivation that imply the combined use of biofertilizers and biostimulants with the purpose of strengthening the benefits of their interaction with plants. On the other hand, Vital-Vilchis et al. (2018) found that in mycorrhizal symbiosis in sunflower cultivation in pot conditions at 20 DAS, mycorrhizal colonization was not established and no plant growth effect was observed; however, starting from 30 DAS, plant growth was favored because of the symbiotic interaction effect between the fungi and plant.

In comparison with the plant treatment inoculated only with the AMF consortium in this study, Chiquito-Contreras et al. (2018) found significant differences (P ≤ 0.05) in the increase of the mycorrhizal colonization percentage and number of spores per gram of soil (35 and 66%, respectively) when they evaluated AMF consortium co-inoculated with the marine bacterium Stenotrophomonas rhizophila in basil plants.

Conclusions

The application of bioproducts (arbuscular mycorrhizal fungi and Spiruvin) increased plant growth and yield of bean var. Delicia 364. Likewise, the combination of Azofert + Rhizophagus irregularis + Spiruvins obtained the greatest yield, 2.11 Mg ha‑1, which represented 37.9% more than the national average.

REFERENCES

Abdel-Fattah, G. M., W. M. Shukry, M. M. B. Shokr, and M. A. Ahmed. 2016. Application of mycorrhizal technology for improving yield production of common bean plants. Int. J. Appl. Sci. Biotechnol. 4: 191-197. doi: https://doi.org/10.3126/ijasbt.v4i2.15103. [ Links ]

Aguirre-Medina, J. F., L. Yeekón-Méndez y S. Espinosa-Zaragoza. 2019. Influencia de hongos endomicorrízicos en el crecimiento de (Tabebuia donnell-smithii Rose). Ecosist. Recur. Agropec. 6: 11-21. doi: http://dx.doi.org/10.19136/era.a6n16.1538. [ Links ]

Angulo, A., R. Ferrera, A. Alarcón, J. J. Almaraz, J. Delgadillo, M. Jiménez y O. García. 2018. Crecimiento y eficiencia fotoquímica del fotosistema ii en plántulas de 2 variedades de Capsicum annuum L. inoculadas con rizobacterias u hongos micorrícicos arbusculares. Rev. Argent. Microbiol. 50: 178-188. doi: https://doi.org/10.1016/j.ram.2017.03.011. [ Links ]

Calero, A., Y. Pérez, E. Quintero, D. Olivera y K. Peña. 2019. Efecto de la aplicación asociada entre Rhizobium leguminosarum y microorganismos eficientes sobre la producción del fríjol común. Cienc. Tecnol. Agropec. 20: 295-308. doi: https://doi.org/10.21930/rcta.vol20_num2_art:1460. [ Links ]

Chiquito-Contreras, R. G., R. Solís-Palacios, J. J. Reyes-Pérez, B. Murillo-Amador, J. Alejandre-Rosas, and L. G. Hernández-Montiel. 2018. Growth promotion of sweet basil by arbuscular mycorrhizal fungi and a marine bacterium. Acta Univ. 28: 1-9. doi: http://dx.doi.org/10.15174/au.2018.2086. [ Links ]

Colás-Sánchez, A., B. Díaz-Pérez, A. Rodríguez-Urrutia, S. Gatorno-Muñóz y O. Rodríguez López. 2018. Efecto de la biofertilización en la morfo fisiología y rendimiento del frijol común (Phaseolus vulgaris L.). Ctro. Agríc. 45: 34-42. [ Links ]

Fernández, F., R. Gómez, L. F. Vanegas, M. A. Martínez, B. M. de la Noval y R. Rivera. 2000. Patent No. 22641. Producto biofertilizante micorrizógeno. Oficina Nacional de Propiedad Industrial. La Habana, Cuba. [ Links ]

Giovannetti, M. and B. Mosse. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84: 489-500. doi: https://doi.org/10.1111/j.1469-8137.1980.tb04556.x. [ Links ]

Hernández, A., J. M. Pérez, D. Bosch y N. Castro. 2015. Nueva versión de clasificación genética de los suelos de Cuba. Ediciones INCA. Mayabeque, Cuba. ISBN: 978-959-7023-77‑7. [ Links ]

Hernández, A. 2016. La cadena de valor del frijol común en Cuba. Estudio de su situación en siete municipios de las provincias Sancti Spíritus y Villa Clara. Agrocadenas. La Habana, Cuba. ISBN: 978-959-296-045-9 [ Links ]

Llanes, V., E. González, D. Mederos y H. Rodríguez. 2019. Percepción de los productores de Phaseolus vulgaris L. acerca de las necesidades de capacitación sobre las plagas. Rev. Protec. Veg. 34: 1-7. [ Links ]

Marín B., M, J. Mena Campos, P. Chaveli Chávez, R. Morán Valdivia y E. Pimentel Vázquez. 2013. Interacción de Tsukamurella paurometabola C-924 con Rhizobium leguminosarum biovar phaseoli CFH en el cultivo de frijol. Acta Agron.62: 52-58. [ Links ]

Martínez-Sánchez, A., G. M. Ortega-Arias-Carbajal , G. González-Pardo, S. Armenteros-Galarraga, M. A. Peña-Martínez, S. Legrá-Mora, E. Carrera-Bocourt, Antonio Bell-García y G. Delgado-Arieta. 2017. Estudio de estabilidad del inóculo LB-1 del bioproducto Lebame. ICIDCA 51: 17-20. [ Links ]

Mujica P., Y., A. Medina C. y E. Rodríguez G. 2017. Inoculación de hongos micorrízicos arbusculares y bacterias promotoras del crecimiento vegetal en el cultivo de maní (Arachis hypogaea L.). Cult. Trop. 38: 15-21. [ Links ]

ONN-NC-ISO 10390. (Oficina Nacional de Normalización). 1999. Calidad del suelo. Determinación de pH. Comité Técnico de Normalización. No. 3. La Habana, Cuba. [ Links ]

ONN-NC-51 (Oficina Nacional de Normalización). 1999. Calidad del suelo. Análisis químico. Determinación del por ciento de materia orgánica. Comité Técnico de Normalización. No. 3. La Habana, Cuba. [ Links ]

ONN-NC-52 (Oficina Nacional de Normalización). 1999. Calidad del suelo. Análisis químico. Determinación de las formas móviles de fósforo y potasio. Comité Técnico de Normalización. No. 3. La Habana, Cuba. [ Links ]

ONN-NC-65 (Oficina Nacional de Normalización). 2000. Calidad del suelo. Análisis químico. Determinación de la capacidad de intercambio catiónico y de los cationes intercambiables del suelo. Comité Técnico de Normalización. No. 3. La Habana, Cuba. [ Links ]

ONEI (Oficina Nacional de Estadística e Información). 2018. Anuario Estadístico de Cuba 2017. pp. 6-32. In: Agricultura, Ganadería, Silvicultura y Pesca. La Habana, Cuba. http://www.one.cu/aec2017/09%20Agricultura%20Ganaderia%20Silvicultura%20Pesca.pdf (Consulta: abril 18, 2019). [ Links ]

Pérez, M. C., H. Carnoza, M. Socorro, A. Casanova y P. Álvarez. 2006. Las investigaciones agropecuarias en Cuba, cien años después. Científico Técnica. Cuba. ISBN: 959-05-0394-2. [ Links ]

Pérez-Peralta, P. J., R. Ferrera-Cerrato, A. Alarcón , L. I. Trejo-Téllez, R. Cruz-Ortega, and H. V. Silva-Rojas. 2019. Responses of the common bean (Phaseolus vulgaris L.) and Rhizobium tropici CIAT899 symbiosystem to induced allelopathy by Ipomoea purpurea L. Roth. Rev. Argent. Microbiol. 51: 47-55. doi: https://doi.org/10.1016/j.ram.2018.01.006. [ Links ]

Phillips, J. M. and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55: 158-161. doi: https://doi.org/10.1016/S0007-1536(70)80110-3. [ Links ]

Rivera, R., L. Ruiz M., M. García, M. Ruiz, J. S. González, A. Falcón, A. Pérez Díaz, A. Epinosa, A. Hernández, G. M. Martín Alonso, E. Pérez, Y. Rodriguez, E. Terry, P. J. González, J. Ramírez, Y. Cruz, Y. Otero Llnes, K. Fernández y M. C. Nápoles García. 2015. Manejo conjunto e impacto de biofertilizantes micorrícicos y otros bioproductos en la producción agrícola de diferentes cultivos. Tech. Report 29: doi: https://doi.org/10.13140/RG.2.1.2416.3605. [ Links ]

Romero, A. 2016. Evaluación agronómica de siete cultivares de frijol (Phaseolus Vulgaris, L.) en la CCS “Frank País García” del Municipio Jesús Menéndez. Invest. Tecnol. 22: 1-10. [ Links ]

Tamayo-Aguilar, Y., M. C. Riera, E. Terry , P. Juárez y Y. Rodríguez. 2019. Respuesta de Vigna unguiculata (L) Walp ante la aplicación de bioproductos en condiciones de huertos intensivos. Acta Agron. 68: 41-46. doi: https://doi.org/10.15446/acag.v68n1.72797. [ Links ]

Tamayo-Vélez, A. and J. A. Bernal Estrada. 2018. Common bean (Phaseolus vulgaris L.) yield response to chemical and biological fertilization in different localities of Colombia. Rev. Fac. Nac. Agron. Medellín 71: 8573-8579. doi: http://dx.doi.org/10.15446/rfnam.v71n3.72392. [ Links ]

Trouvelot, A., J. L. Kough, and V. Gianinazzi-Pearson. 1986. Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. pp. 217-221. In: V. Gianinazzi-Pearson and S. Gianinazzi (eds.). Physiological and genetical aspects of mycorrhizae. INTA. Paris, Francia. [ Links ]

Vital-Vilchis, I., E. E. Quiñones-Aguilar, L. G. Hernández-Montiel y G. Rincón Enriquez 2018. Viabilidad de esporas de hongos micorrízicos arbusculares y semillas de girasol para el establecimiento de la simbiosis micorrízica. Biotecnol. Sust. 3: 15-25. [ Links ]

Wilches Ortiz, W. A., M. M. Ramírez Gómez, U. A. Pérez Moncada, D. P. Serralde-Ordoñez, A. M. Peñaranda Rolon and L. Ramírez. 2019. Association of arbuscular mycorrhizal fungi (AMF) with sugarcane plants (Saccharum officinarum) for panela production in Colombia. Terra Latinoamericana 37: 175-184. doi: https://doi.org/10.28940/terra.v37i2.481. [ Links ]

Williams, A., L. Manoharan, N. P. Rosenstock, P. A. Olsson, and K. Hedlund. 2017. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytol. 213: 874-885. doi: https://doi.org/10.1111/nph.14196. [ Links ]

IUSS Working Group WRB (International Union of Soil Sciences-World Reference Base for Soil Resources). 2015. World WRB Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome. [ Links ]

Recommended citation:

Tamayo-Aguilar, Y., P. Juárez-López, W. Capdevila-Bueno, J. Lescaille-Acosta y E. Terry-Alfonso. 2020. Bioproductos en el crecimiento y rendimiento de Phaseolus vulgaris L. var. Delicia 364. Terra Latinoamericana Número Especial 38-3: 667-678. DOI: https://doi.org/10.28940/terra.v38i3.672

Received: October 27, 2019; Accepted: January 06, 2020

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons