SciELO - Scientific Electronic Library Online

 
vol.8 número40Propiedades físico-mecánicas de la madera Tectona grandis L. f. de una plantación comercial en el estado de MichoacánSistema de cubicación para árboles individuales de Quercus sp. en bosques bajo manejo de Puebla, México índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias forestales

versão impressa ISSN 2007-1132

Rev. mex. de cienc. forestales vol.8 no.40 México Mar./Abr. 2017

 

Articles

Tree diversity at different altitude levels in the El Salto, Durango región

María de Jesús Medrano Meraz1 

Francisco Javier Hernández2 

Sacramento Corral Rivas2 

Juan Abel Nájera Luna2 

1Programa de Maestría en Ciencias Forestales, Instituto Tecnológico de El Salto, Durango. México. Correo-e: marychu0103@gmail.com

2División de Estudios de Posgrado e Investigación, Instituto Tecnológico de El Salto, Durango. México.


Abstract:

The presence of plant species is a function of altitude; therefore, the purpose of this study was to estimate and compare tree diversity on the altitudinal gradient of the El Salto, Durango region. Twelve forest communities were selected from between 1 500 and 3 000 m, which was divided into five intervals of 300 m each. A total of 268 circular sites of 0.1 ha were randomly distributed proportionally for each interval, where species richness (S), proportional diversity indexes of Shannon-Wiener (H’) and Simpson (λ), of Pielou’s equity (J’) and dominance of Simpson (Eλ) were determined. Comparison of tree diversity between altitudes was made on the Shannon-Wiener index using the Hutcheson t-test. Species richness varied from 14 to 25 taxa, the Shannon-Wiener index from 1.94 to 2.67 and Simpson’s 0.09 to 0.18. Equity and dominance by Pielou and Simpson suggest that species abundance tends to be heterogeneous. The Hutcheson t test showed that there are significant differences in species diversity between altitudinal intervals.

Key words: Tree diversity; altitudinal gradient; Pielou index; Shannon-Wiener index; Simpson index; species richness

Resumen:

La presencia de especies vegetales está en función de la altitud, por lo que, el propósito de este estudio fue estimar y comparar la diversidad arbórea sobre un gradiente altitudinal entre los 1 500 a los 3 000 m de la región de El Salto, Durango, que fue dividido en cinco intervalos de 300 m cada uno. Se seleccionaron doce comunidades forestales, y se ubicaron 268 sitios circulares de 0.1 ha de manera aleatoria, distribuidos de forma proporcional por cada intervalo, dentro del cual se estimó la riqueza de especies (S), los índices de diversidad proporcional de Shannon-Wiener (H’) y Simpson (λ), los de equidad de Pielou (J’) y de dominancia de Simpson (Eλ). La comparación de la diversidad arbórea entre altitudes se hizo sobre el índice de Shannon-Wiener mediante la prueba de t de Hutcheson. La riqueza de especies varió de 14 a 25 taxa, el índice de Shannon de 1.94 a 2.67 y el de Simpson de 0.09 a 0.18. Los de equidad y dominancia de Pielou y Simpson sugieren que la abundancia de las especies tiende a ser heterogénea. La prueba de t de Hutcheson demostró que existen diferencias significativas en la diversidad de especies entre los intervalos altitudinales.

Palabras clave: Diversidad arbórea; gradiente altitudinal; índice de Pielou; índice de Shannon-Wiener; índice de Simpson; riqueza de especies

Introduction

Mountain systems meet environmental conditions related to climatic and edaphic variations that occur at small temporal and spatial ranges, which ensures the conservation of biodiversity (Körner et al., 2005; Nogués et al., 2007). Temperature, rainfall, solar radiation and humidity favor the development of some more than others, based on their adaptation to the characteristics of the environment (Gutiérrez and Canales, 2012).

In general, environmental factors modify species richness along some gradient because the available resources vary; thus, in the more favorable areas there will be greater possibilities for the existence of a higher diversity of species (McCarthy et al., 2001). Altitudinal gradients in particular are closely associated with environmental modifications, which implies, in turn, a change in species diversity.

The study of this gradient in relation to the presence of plant species is important to know the differentiation between habitats with respect to their composition; to determine the distribution areas of each of the species and their spatial arrangement; to calculate the dimensions of the spaces of the endemic species; to understand how the structure of overlap and assembly between species; projecting the fundamental and realized ecological niche of species and the movement of species caused by natural environmental changes and anthropogenic activities (Koleff et al., 2008). In this sense, the evaluation of the diversity of species in different altitudinal ranges contributes to the understanding of the changes that biodiversity undergoes in this context.

Although the region includes contrasting topographic conditions typical of mountainous areas, there is little information on the diversity of species and their distribution patterns in relation to the altitudinal gradient. Therefore, it is considered that the study described below constitutes an important contribution to the knowledge of the structuring of the species and the determinants in their composition for incorporation into the management programs for the purposes of harvesting and conservation of timber species. Thus, the objective of the present work was to evaluate and characterize the changes in the diversity of the arboreal vegetation in relation to the altitudinal gradient of the region.

Materials and Methods

The study area

Field work was carried out in the El Salto region at the southwestern part of the state of Durango (Figure 1), which is located in the mountainous massif of the Sierra Madre Occidental. The forest region of El Salto covers around 507 127 ha. The heights above sea level are distributed between 1 400 and 3 000 m (Inegi, 2017).

According to the climatic classification of Köeppen, adapted for Mexico by García (1981), the predominant climate in the study area is C (W2), which corresponds to a subhumid temperate. The average annual rainfall is 1 200 mm, with rainfall in the months of June, July, August and September. This area has been subject to the application of the Método de Desarrollo Silvícola (Silvicultural Development Method) for about 35 years, a treatment that tends to the formation of regular forests.

Figure 1 Study area. 

Sampling

Twelve forest communities were selected on an altitudinal gradient from 1 500 to 3 000 m, where all species of the temperate climate forests of the El Salto region grow. The gradient was divided into five ranges of 300 m each. In, 268 circular sites of 0.1 ha which were randomly distributed in regard to each altitude range. Within each site, the name of the species and its abundance were recorded.

Diversity and Equity Indices

Within each altitude range, species richness (S), Shannon- Wiener-Wiener proportional diversity index (H’), Simpson index (λ) and Pielou (J’) equity index and the Simpson for Dominance (Eλ) were estimated.

1

2

3

4

Where:

pi

= Proportional abundance of the number of individuals of each species (ni) divided by the total number of individuals (N)

H’max

= Maximum diversity of Shannon-Wiener, which equals the natural logarithm (ln) of the number of species (S)

Comparison of diversity

To determine if there were significant differences in the diversity between altitude ranges, the statistical test of Hutcheson (1970) was used, based on equation 5.

5

Variance was estimated from equation 6.

6

Once the value of t was known, the degrees of freedom (equation 7) were calculated to perform the hypothesis test.

Where:

H’1, H’2

= Shannon-Wiener indices of altitude ranges subject to comparison

VarH’1, VarH’2

= Shannon-Wiener variances of altitude ranges subject to comparison

Ni

= Total number of individuals in the ith gradient

Results

Species richness and the altitudinal gradient

Overall, six families, eight genera and 30 species were recorded; the most abundant families were Pinaceae with 12 and Fagaceae with 1 (Table 1).

Based on the different gradient ranges, the greatest number of species was found in the 2 100-2 400 m (S = 25 species), followed by the one of 1 800 to 2 100 m, by the one of 2 400 to 2 700 m, (S = 24 species each), 2 700 to 3 000 m (S = 20 species) and 1 500 to 1 800 m (14 species). This indicates that the greatest richness was located in the intermediate altitude ranges (1 800-2 700 m) and, in contrast, in the lowest (1 500-1 800 m) the smallest amount of taxa are found.

Table 1 Tree species richness by altitude ranges within the El Salto region. 

The species that were recognized along the altitude gradient studied were Arbutus tessellata P. D. Sørensen, Q. crassifolia Humb. & Bonpl., Q. rugosa Née, Q. sideroxyla Humb. & Bonpl., Pinus strobiformis Engelm., P. cooperi C. E. Blanco, P. durangensis Martínez, P. lumholtzii B.L.Rob. & Fernald, P. devoniana Lindl. and P. teocote Schiede ex Schltdl. In contrast, species restricted to a single range were Q. viminea Trel. (1 800-2 100 m), Pseodotsuga menziesii (Mirb.) Franco (2 700-3 000 m), Abies durangensis Martínez and Populus tremuloides Michx. (2 400-2 700 m). The other species had an in-between distribution range.

Proportional Diversity

Table 2 shows the values of the Shannon-Wiener index of 1.94 to 2.67, which means that there is greater diversity in the altitude ranges of 1 500-1 800 m, 1 800-2 100 m, 2 100-2 400 m and 2 400-2 700 m, compared to 2 700 to 3 000 m. Simpson’s dominance indicators varied from 0.82 to 0.91, and refer to the ranges 2 700-3 000 m and 1 800-2 100 m the lowest and highest dominance, respectively. On the other hand, the results of the Pielou Equity Index (J ‘) are between 0.54 and 0.74, corresponding to the lowest and highest homogeneity in the ranges of 2 700-3 000 m and from 1 800 to 2 100 m.

Table 2 Diversity and equity in different altitudinal ranges of the region of El Salto, Durango

The Shannon-Wiener indices of each altitude range and significance levels (P-value) define the difference in diversity between them. Most of them presented statistically different indicators of diversity of Shannon-Wiener (P-value <0.05). The opposite was verified (P-value> 0.05) among the 1500-1800 vs. 2 400-2 700 and 1 800-2 100 vs. 2 100-2 400 (Table 3).

Table 3 Hutcheson t test for each pair of assessed altitude ranges. 

Discussion

There is a variety of hypotheses that seek to explain the patterns of specific wealth in relation to altitude. Among them, Stevens (1992), Alvizu (2004) and Botero (2011) point out that species richness decreases as altitude increases, while Colwell and Hurt (1994), Rahbek (1995), Colwell and Lees (2000) Brown (2001) and McCain and Grytnes (2010) argue that there is a greater number of species in intermediate range ranges. However, according to McCain (2005), specific trends of species richness occurring in each region depend on climatic and edaphic factors that are linked to the range of altitude such as precipitation and temperature as well as soil type and Its moisture content. Lamprecht (1990) mentions that the temperature in particular descends between 0.4 to 0.7 °C per 100 m of increase in altitude. This variation is in function of the relative humidity of the air, even decreasing until 1 °C when the air of the atmosphere is completely dry. In relation to the present study, the pattern of distribution of specific richness as a function of altitude changes, shows the presence of a greater number of species in the intermediate ranges, which assume an altitude of 2 100 to 2 700 m, against high and low altitudes.

Margalef (1972) reports that the Shannon-Wiener index usually ranges from 1 to 5, and interprets values lower than 2 as low diversity, from 2 to 3.5 mean diversity and greater than 3.5 as high diversity. According to this criterion, the results of the present study suggest that the forest communities of the ranges 1 500-1 800 m, 1 800-2 100 m, 2 100-2 400 m and 2 400-2 700 m present a mean diversity in contrast to the altitudinal range of 2 700 to 3 000 m, classified as little diverse. The Shannon-Wiener diversity indexes obtained in this study are much higher than those estimated in other studies in mixed coniferous forests with broadleaved conifers (Villavicencio et al., 2005, Díaz et al., 2012).

Regardless of the variations in the environmental conditions attributed to the altitude gradient over changes in biodiversity, in the particular case of other mixed coniferous and broadleaved areas, their scarcity seems to be influenced by applied silvicultural practices. In this context, Návar and González (2009), when studying the subject in neighboring forests of the study area, found that the Shannon-Wiener diversity index decreases as the cutting intensity is accentuated. The estimated maximum and minimum values were 1.33 and 0.53, respectively, while Castellanos-Bolaños et al. (2008) calculated results lower than 2.17 for the same index in a forest of Pinus patula Schiede ex Schltdl. & Cham. of the state of Oaxaca. Similarly, García et al. (2012) determined figures between 1.82 and 2.02, of which the maximum diversity corresponds to forests belonging to inaccessible areas of the Sierra Madre Oriental of the state of Nuevo León.

Although Simpson’s indicators suggest a high diversity in each of the altitude ranges (λ <0.17), their behavior is similar to the Shannon-Wiener index, since the maximum diversity is verified in the range of 1 800- 2 100 m (λ = 0.09) and the minimum in the range of 2 700 to 3 000 m (λ = 0.18). In this way the interpretation of the results of the Shannon-Wiener Equity Index (Pielou Equity Index) is congruent with those obtained with the Simpson Dominance Index (Eλ) ranging from 0.82 to 0.91. According to the two, the altitude range of 2 700-3 000 m brings together some dominant species, and in decreasing order those of 1 500-1 800 m, 2 400-2 700 m, 2 100-2 400 m and 1 800-2 100 m (Table 2).

Based on the Simpson indicators estimated in the present case, and if a community is considered more complex the greater the number of species that comprise it and the less dominance present one or a few species with respect to the others (Baca, 2000), the communities evaluated on this occasion are classified as diverse.

The Hutcheson t test revealed statistically significant differences in most of the pairs of altitudinal intervals evaluated. In particular, the 1 500-1 800 m versus the 2 400-2 700 m, although suggesting a difference in specific richness (14 vs 24 species), the Shannon-Wiener index indicated homogeneity in proportional diversity. This result is attributed to the influence of dominant species, reflected in the indexes of equity and dominance. In this sense, Alanís et al. (2010) mentioned that the number of individuals affects the differentiation of the composition of the species present in each community between altitude ranges.

Conclusions

Within the altitudinal gradient studied 30 tree species distributed in the Betulaceae, Cupressaceae, Ericaceae, Fagaceae, Pinaceae and Salicaceae families were recorded. Species richness varied from 14 to 25, the Shannon-Wiener diversity indexes from 1.94 to 2.67 and Simpson’s from 0.09 to 0.18; the greatest richness and diversity at intermediate altitudinal intervals was found. Comparison of the Shannon-Wiener diversity index indicates that there is a significant difference between most of the altitude ranges. It was also observed that the dominance of tree species influences the differentiation of diversity between the altitudinal intervals. These results suggest that the environmental variability attributed to the altitudinal gradient plays an important role in the presence and abundance of the species.

Acknowledgements

The authors wish to express their appreciation to the Instituto Tecnológico de El Salto (El Salto Technological Institute) for the financial support provided to accomplish this project and to the Unidad de Prestación de Servicios Forestales de El Salto Durango (UPSE) (El Salto Durango Forest Services Provision Unit) for the help in the field data collection

REFERENCES

Alanís, E., R. Aranda, J. M. Mata, P. A. Canizales, J. Jiménez, J. I. Uvalle, A. Valdecantos y M. G. Ruiz. 2010. Riqueza y diversidad de especies leñosas del bosque tropical caducifolio en San Luis Potosí, México. Ciencia UANL 13: 287-294. [ Links ]

Alvizu D., P. A. 2004. Complejidad y respuesta funcional de la vegetación de páramo a lo largo de gradientes altitudinales. Tesis de Doctorado. Facultad de Ciencias, Universidad de los Andes. Mérida, Venezuela. 66 p. [ Links ]

Baca V., J. M. 2000. Caracterización de la estructura vertical y horizontal en bosques de pino-encino. Tesis de Maestría. Universidad Autónoma de Nuevo León. Linares, N L., México. 105 p. [ Links ]

Botero A., M. A. 2011. Estructura de las comunidades de mamíferos carnívoros en un gradiente altitudinal en el estado de Oaxaca, México. Tesis de Maestría. Instituto Politécnico Nacional. Santa Cruz Xoxocotlán, Oax., México. 53 p. [ Links ]

Brown J., H. 2001. Mammals on mountain sides: elevational patterns of diversity. Global Ecology and Biogeography 10: 101-109. [ Links ]

Castellanos-Boñalos, J. F., E. J. Treviño-Garza, O. A. Aguirre-Calderón, J. Jiménez-Pérez, M. Musalem-Santiago y P. López-Aguillón. 2008. Estructura del bosque de pino patula bajo manejo en Ixtlán de Juárez, Oaxaca, México. Madera y Bosques 14(2): 51-63. [ Links ]

Colwell, R. K. and D. C. Lees. 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology & Evolution 15(2): 70-76. [ Links ]

Colwell, R. K . and G. C. Hurt. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist 144: 570-595. [ Links ]

Díaz, V., R. J. Sosa y S. D. Pérez. 2012. Distribución y abundancia de las especies arbóreas y arbustivas en la Sierra Fría, Aguascalientes, México. Polibotánica 34: 99-126. [ Links ]

García A., M. A., A. E. Estrada C. y C. M. Cantú A. 2012. Clasificación de nueve sitios de bosque mixto de coníferas con presencia de Taxus glubosa en la Sierra Madre Oriental, Nuevo León y Tamaulipas, México. Botanical Sciences 90(1): 53-62. [ Links ]

García M., E. 1981. Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía. Universidad Nacional Autónoma de México. México, D. F., México. 252 p. [ Links ]

Gutiérrez F., I. R. y G. A. Canales. 2012. Evaluación comparativa de la diversidad de flora silvestre entre la isla Taquile y el cerro Chiani en relación a la altitud, Puno, Perú. Ecología Aplicada 1: 40-46. [ Links ]

Hutcheson, K. 1970. A test for comparing diversities based on the Shannon-Wiener formula. Journal of Theoretical Biology 29(1): 151-154. [ Links ]

Instituto Nacional de Geografía y Estadística. (Inegi). 2017. Espacio y datos de México. Pueblo Nuevo, Durango. http://www.beta.inegi.org.mx/app/mapa/espacioydatos/default.aspxo=1008858001 (4 de mayo del 2017). [ Links ]

Koleff, P., J. Soberón, H. T. Arita, P. Dávila, O. Flores-Villela, J. Golubov, G. Halfter, A. Lira-Noriega, C. E. Moreno, E. Moreno, M. Munguía, M. Murguía, A. G. Navarro-Sigüenza, O. Téllez, L. Ochoa-Ochoa, A. Townsend P. y P. Rodríguez 2008. Patrones de diversidad espacial en grupos selectos de especies. In: Soberón, J., G. Halffter y J. Llorente-Bousquets (comps.). Capital Natural de México, Vol. 1: conocimiento actual de la biodiversidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México, D.F., México. pp. 323-364. [ Links ]

Körner, C., M. Ohsawa, E. Spehn, E. Berge, H. Bugmann, B. Groombridge, H. Thomas, J. Ives, N. Jodha, B. Messerli, P. Price, M Reasoned, A. Rodgers, J. Thonell, M. Yashino, J. Baron, B. Barry, J. Blais, R. Bradley, R. Hofstede, V. Kapos, P. Leavitt, R. Monson, L. Nagy, D. Schindler, R. Vinebrooke and T. Watanabe. 2005. Mountain systems. In: Hassan, R., R. Scholes and N. Ash (eds.). Ecosystems and human well-being: current state and trends. Millennium Ecosystem Assessment. Island Press. Washington, DC, USA. Vol 1. pp. 681-716. [ Links ]

Lamprecht, H. 1990. Silvicultura en los trópicos: los ecosistemas forestales en los bosques tropicales y sus especies arbóreas; posibilidades y métodos para un aprovechamiento sostenido. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH. Eschborn. Hesse, Alemania. 340 p. [ Links ]

McCain, C. M. 2005. Elevational gradients in diversity of small mammals. Ecology 86(2): 366-372. [ Links ]

McCain, C. M. and J. A. Grytnes. 2010. Elevational gradients in species richness. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester, UK. 10 p. DOI: 10.1002/9780470015902.a0022548. [ Links ]

McCarthy, J. J., O. F. Canziani, N. A. Leary, D. J. Dokken and K. S. White. 2001. Climate change: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge, UK. 1005 p. [ Links ]

Margalef, R. 1972. Homage to E. Hutchison, or why is there an upper limit to diversity. Transactions of the Connecticut Academy of Arts and Sciences 44: 21-235. [ Links ]

Návar Ch., J. J. y S. González E. 2009. Diversidad, estructura y productividad de bosques templados de Duintervalo, México. Polibotánica 27: 71-87. [ Links ]

Nogués B., D., M. B. Araújo, M. P. Errea and J. P. Martínez R. 2007. Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change 17: 420-428. [ Links ]

Rahbek, C. 1995. The elevational gradient of species richness: a uniform pattern. Ecography 18(2): 200-205. [ Links ]

Stevens, G. C. 1992. The elevational gradient in altitudinal range: an extension of the Rapoport’s latitudinal rule to altitude. The American Naturalist 140: 893-91. [ Links ]

Villavicencio G., R., P. Bauche P., A. Gallegos R., A. Santiago P. y F. Huerta M. 2005. Caracterización estructural y diversidad de comunidades arbóreas de La Sierra de Quila. Ibugana, Boletín Ibug 13(1): 67-76. [ Links ]

Received: December 09, 2015; Accepted: February 12, 2017

Conflict of interests:

The authors declare no conflict of interest

Contribution by author:

María de Jesús Medrano Meraz and Francisco Javier Hernández: elaboration of the project, planning of activities, survey of field information, identification of species, information capture, data analysis and writing of the manuscript; Sacramento Corral Rivas and Juan Abel Nájera Luna: species identification, data analysis and writing of the manuscript

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons