SciELO - Scientific Electronic Library Online

 
vol.15 número81Los árboles longevos y frondosos en la provisión de servicios ecosistémicos en ambientes urbanosAnálisis multitemporal de cambios en el NDVI en una región con aprovechamiento forestal en la península de Yucatán, México índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias forestales

versão impressa ISSN 2007-1132

Rev. mex. de cienc. forestales vol.15 no.81 México Jan./Fev. 2024  Epub 13-Maio-2024

https://doi.org/10.29298/rmcf.v15i81.1424 

Scientific article

Patterns of structure and diversity in a medium sub-evergreen

Alfredo Esteban Tadeo-Noble1 

Edmundo García Moya2  * 

Juan Ignacio Valdez Hernández3 

Lauro López Mata2 

Mario Luna Cavazos2 

Héctor Manuel De Los Santos Posadas3 

José Luis Hernández Stefanoni4 

1Investigador por México Conahcyt. Colegio de Postgraduados Campus Campeche. México.

2Posgrado en Botánica, Colegio de Postgraduados Campus Montecillo, México.

3Posgrado en Ciencias Forestales, Colegio de Postgraduados Campus Montecillo. México.

4Centro de Investigación Científica de Yucatán. México.


Abstract

Vegetation structure patterns (VSP) are affected by the dynamic interaction between social and ecological elements. The objective was to describe the patterns of structure and diversity of the medium sub-evergreen forest after timber harvesting in Noh Bec, Quintana Roo, Mexico. The forest management areas were sampled simultaneously at three stages of tree development in 10×50-m rectangular sampling units (poles with ND [1.3 m]≥25 cm), and 10-m (saplings with ND≥5 to <25 cm) and 2-m square hierarchical units (seedlings with DN<5 cm). Diameter structure, Importance Value Index (IVI), and alpha diversity were calculated. Seventy species (29 families and 64 genera), 52 675 individuals ha-1 were recorded among the seedlings, 1 015 individuals ha-1, 9.51 m2 ha-1 of basal area (BA) and 112.60 m3 ha-1 of total tree volume (TTV) among saplings, and 95 individuals ha-1, 12.08 m2 ha-1 of BA and 145.41 m3 ha-1 of TTV among poles. The Sapotaceae family accounted for the largest proportion of the IVI. Pouteria reticulata was the most important species among the seedlings and saplings, while among the poles, it was Manilkara zapota. The diversity of the VSPs is evident, however, it is possible to distinguish them through specific indicators such as Fisher's alpha and structural dasometric values.

Keywords Seedlings; poles; Community Forestry Management; saplings; Noh Bec; Pilot Forestry Plan

Resumen

Los patrones de la estructura de la vegetación (PEV) son afectados por la interacción dinámica entre los elementos sociales y ecológicos. El objetivo fue describir los patrones de la estructura y diversidad de la selva mediana subperennifolia después del aprovechamiento forestal maderable en Noh Bec, Quintana Roo, México. Se llevó a cabo un muestreo en las zonas de gestión forestal de manera simultánea en tres estadios de desarrollo del arbolado en unidades de muestreo rectangulares 10×50 m (fustales con DN [1.3 m]≥25 cm,), unidades jerárquicas cuadradas de 10 m (latizales con DN≥5 a<25 cm) y de 2 m (brinzales con DN<5 cm). Se calculó la estructura diamétrica, Índice de Valor de Importancia (IVI) y la diversidad alfa. Se registraron 70 especies (29 familias y 64 géneros), 52 675 individuos ha-1 en los brinzales, 1 015 individuos ha-1, 9.51 m2 ha-1 de área basal (AB) y 112.60 m3 ha-1 de volumen total árbol (VTA) en latizales, y 95 individuos ha-1, 12.08 m2 ha-1 de AB y 145.41 m3 ha-1 de VTA en fustales. La familia Sapotaceae reunió la mayor proporción de los IVI. Pouteria reticulata fue la especie más importante en los brinzales y latizales, en tanto que en los fustales fue Manilkara zapota. La diversidad de los PEV es evidente, sin embargo, es posible distinguirlos a través de indicadores específicos como el alfa de Fisher y los valores dasométricos estructurales.

Palabras clave Brinzales; fustales; Gestión Forestal Comunitaria; latizales; Noh Bec; Plan Piloto Forestal

Introduction

The jungles worldwide are located around the equator between 5 and 10° north and south (Corlett and Primack, 2011); the jungles in Mexico are located along the coasts of the Pacific Ocean and the Gulf of Mexico, in the states of Chiapas and Tabasco, extending to the Yucatan Peninsula (Miranda and Hernández-Xolocotzi, 2014). Rainforests are one of the most important carbon reservoirs in the world and are home to a large proportion of the tree species found in all ecosystems on the planet (Bonnell et al., 2011). For years, they have been affected by natural and anthropogenic disturbances (Navarro-Martínez et al., 2012), particularly in the Yucatan Peninsula, where vegetation has exhibited changes in species composition and dominance after the impact of hurricanes such as Dean and Gilberto, with small reductions of species richness (Sánchez and Islebe, 1999; Navarro-Martínez et al., 2012).

The effects of selective logging have been discussed by several authors (Kammesheidt, 1998; Edwards et al., 2014; Ding et al., 2017) in terms of timber production (Hall et al., 2003; Brown and Gurevitch, 2004; Villela et al., 2006) and biodiversity conservation (Burivalova et al., 2014; Edwards et al., 2014).

Tree structure patterns are mainly affected by the dynamic interaction between social and ecological elements, as a consequence of the nature of the socioeconomic systems that regulate these (Gardner et al., 2009).

Forest management has a variable effect on tree diversity (Monárrez-González et al., 2018), can modify the structure and composition of the forest favoring certain species, and evinces a synergistic or compensatory relationship between forest management and biodiversity (Monárrez-González et al., 2018). In addition, hurricanes also create adverse or favorable conditions, as they modify the richness of tree species (Gutiérrez-Granados et al., 2011; Pat-Aké et al., 2018), which establishes different patterns of tree structure in reduced areas of the same vegetation type, according to the capacity to recover the equilibrium after the effect of the disturbance (Pimm, 1984).

This paper analyzes the patterns of structure and diversity in a medium sub-evergreen forest after timber harvesting under three forest management conditions: seedlings, saplings, and poles under the assumption that species richness and diversity, as well as structural importance values, are statistically equal among the three forest management conditions.

Materials and Methods

Study area

The Noh Bec ejido is located in the municipality of Felipe Carrillo Puerto, Quintana Roo, with a surface area of 24 122.88 ha (Phina, 2018), between coordinates 19°02'30" and 19°12'30" N and 88°13'30" and 88°27'30" W (Pat-Aké et al., 2018) (Figure 1). The Noh Bec ejido has a permanent forest area (PFA) of 18 510 ha (87 % of the total area) that is used for timber and non-timber forest harvesting. The study area covered 10 580 ha of the PFA of medium sub-evergreen forest (Pennington and Sarukhán, 2005). The climate is warm sub-humid (Aw1 (x')), with rainfall in summer and part of the winter, the average annual rainfall is 1 200 mm, and the average temperature varies between 18 and 26 °C (García, 2004).

Figure 1 Location of forest management zones in the permanent forest area of the Noh Bec ejido, Quintana Roo, Mexico. 

Field sampling

The tree vegetation was divided into three stages of development for sampling purposes: seedlings, saplings, and poles according to Alvis (2009). Field data were collected in 2015 with 300 randomly distributed sampling units (SUs) in 10×50 m rectangular Sampling Units (SU). Mature trees (poles) with a normal diameter (ND) (measured at 1.3 m from the ground) of 25 cm or more were registered. 300 square units of 10 m were counted for medium-sized trees (saplings) with a diameter of 5 cm to less than 25 cm, and 300 square units of 2 m for young trees (saplings) with a diameter of less than 5 cm. The ND of all individuals with 5 cm or more was measured with a model 283/5m Forestry Suppliers® diameter tape. For individuals with a ND of less than 5 cm, the count was made by species.

The sampling was distributed in three areas belonging to three forest management programs (FMPs): management zone corresponding to the time of the forestry pilot plan (FPP-MZ), forest management zone corresponding to the time of the beginning of community forest management (CFM-MZ), and post-hurricane Dean management zone (PHD-MZ), this zone was managed according to criteria of rescue of felled and plagued trees of commercial interest authorized through notifications and a simplified level authorization document.

Horizontal structure

Diameter categories were determined with inflection points of a curve of the number of individuals and diameter (López-Toledo et al., 2012) in order to establish the number of possible groupings. The appropriate clustering of diameter categories (k) (P≤0.0001) was estimated with the partitioning around medioids method (PAM) (Rousseeuw, 1987; Tadeo-Noble et al., 2019).

Structural importance

The Importance Value Index (IVI) of the saplings and poles species was estimated according to Beltrán-Rodríguez et al. (2018), expressed as a percentage.

IVI=RF+RD+RDo3 (1)

Where:

RF = Relative frequency

RD = Relative density

RDo = Relative dominance

In the case of the saplings, the modified IVI was calculated for each species because diameters were not measured in this sampling (Tadeo-Noble et al., 2019).

IVIM=RF+RD2 (2)

Where:

RF = Relative frequency

RD = Relative density

Alpha diversity

The alpha diversity of the species was estimated with the Margalef Index (Magurran and McGill, 2011):

Dα=(S-1)(Loge(N)) (3)

Where:

S = Number of species

N = Total number of individuals

Simpson's Index (Magurran, 1988) defined as:

λ=1nini-1NN-1 (4)

Where:

n i = Number of individuals of species i

N = Total number of individuals

The following formula was used to calculate the Fisher Alpha Index (FAI) (Magurran, 2013):

S=α ln1+Nα (5)

Where:

S = Number of species

α = Fisher's Alpha Diversity Index

N = Total number of individuals

Fisher's α values are expressed with 95 % confidence intervals (Hayek and Buzas, 2010; Magurran, 2013).

CI=α±1.96×SE (6)

Where:

α = Punctual value of Fisher’s alpha diversity index

SE = Standard error

Species heterogeneity

Heterogeneity (Magurran, 1988) expressed as:

H=-pi×lnpi (7)

Where:

pi = Proportion of individuals in the total sample corresponding to the i th species

Hutcheson's (1970) method was used to test for differences in heterogeneity between two study areas (Beltrán-Rodríguez et al., 2018).

Species equity

The ratio of the observed diversity to the maximum diversity is a measure of species’ partitioning (Magurran, 1988; Carreón-Santos and Valdez-Hernández, 2014) estimated as:

E=Hln(S) (8)

Where:

H’ = Shannon-Wiener index

S = Number of species

Statistical analysis

The Importance Value Index (IVI) was evaluated by performing a Wilcoxon rank test (Muñoz et al., 2017) and Spearman's correlation (Zar, 2010) was estimated. The estimation of richness indices, alpha diversity indices, heterogeneity and Fisher's alpha was performed in the Species Diversity & Richness (SDR) software version 4.1.2 (Seaby and Henderson, 2006), and for statistical comparisons of the number of species, Margalef, Equity and Simpson's inverse; we used Solow's (1993) sample randomization test proposal included in the SDR software.

Results and Discussion

Structural attributes

The values of density of individuals, basal area, and total tree volume in the three forest management zones (Table 1) are very similar to the patterns quoted by Tadeo et al. (2014), Pat-Aké et al. (2018), and Tadeo-Noble et al. (2019) for the same study area and similar to those pointed out by Negreros-Castillo et al. (2014) in medium sub-evergreen forest with timber forest management.

Table 1 Structural values of the forest management zones of the Noh Bec ejido, Quintana Roo, Mexico. 

Stage of
development
Forest
management
zone
Density of
individuals
(ind. ha-1)
Basal area
(m2 ha-1)
Total tree
volumen
(m3 ha-1)
Sample
(n)
Seedlings FPP 54 450±3 794 a 100
CFM 52 300±3 224 a 100
PHD 51 275±4 034 a 100
Av.±SE 52 675±2 130
Saplings FPP 1 008±47 a 8.95±0.47 a 104.61±5.49 b 100
CFM 1 052±47 a 9.48±0.58 a 109.40±6.72 ab 100
PHD 985±57 a 10.06±0.71 a 123.62±8.88 a 100
Av.±SE 1 015±29 9.51±0.34 112.60±4.16
Poles FPP 107±5 a 14.15±0.80 b 171.43±9.88 b 100
CFM 83±4 c 10.93±0.71 a 131.91±9.28a 100
PHD 94±5 b 11.18±0.64 a 132.88±8.20 a 100
Av.±SE 95±3 12.08±0.42 145.41±5.37

FPP = Forestry pilot plan; CFM = Community forestry management; PHD = Post-hurricane Dean; Av.±SE = Average±standard error. Values of a parameter followed by different letters between management zones indicate a significant difference (p<0.05).

Diameter distribution

The diameter distribution of the three management zones tends to the left in the form of an inverted jack, the values in the normal diameter (ND) went from 5 cm to 130, 107, and 110.1 cm, depending on the management zone (FPP, CFM, and PHD) (Figure 2). The highest density was concentrated in the first diameter interval (Zamora et al., 2008; Tadeo-Noble et al., 2019), the proportions of diameter intervals below 25 cm coincide with the data published by García-Licona et al. (2014). The diameter distribution showed a substantial and progressive decrease as it moved away from the smaller diameters, a pattern that is described for the medium sub-deciduous forest (Gutiérrez et al., 2011).

FPP = Forestry pilot plan; CFM = Community forestry management; PHD = Post-hurricane Dean.

Figure 2 Diametric stratification of trees in the management zones based on the partitioning method and allocation of data generated from medioids. 

Importance value of vegetation in the different management zones

The first three places of IVI M in seedlings, saplings, and poles did not correspond to the same species, there were only changes of place between them. In the case of the seedlings, four of the IVI M species are canopy-dominant trees, two examples are Brosimum alicastrum Sw. (Moraceae) and Manilkara zapota (L.) P. Royen (Sapotaceae). The most important saplings species within the Noh Bec forest structure are Pouteria reticulata (Engl.) Eyma and Damburneya patens (Sw.) Trofimov (Table 2), which grow under the canopy. The jungle of Quintana Roo is a place characterized by endemisms, e. g., the presence, in the medium sub-evergreen forest, of Cryosophila stauracantha (Heynh) R. Evans, an abundant species in this stratum (Ibarra-Manriquez et al., 1995; Martínez and Galindo-Leal, 2002; Pennington and Sarukhán, 2005).

Table 2 Modified Importance Value Indices (IVI M ) of the best represented sapling species by management zones. 

Scientific name Family FPP CFM PHD WA
Pouteria reticulata (Engl.) Eyma Sapotaceae 21.27 30.37 27.67 26.43
Cryosophila stauracantha (Heynh.) R. Evans Arecaceae 13.08 10.83 7.97 10.63
Damburneya patens (Sw.) Trofimov Lauraceae 8.17 8.53 13.00 9.90
Piper aduncum L. Piperaceae 9.39 7.32 8.57 8.43
Psidium oligospermum DC. Myrtaceae 5.91 7.76 8.25 7.31
Trichilia minutiflora Standl. Meliaceae 5.16 3.58 3.37 4.04
Brosimum alicastrum Sw. Moraceae 3.19 4.82 3.14 3.72
Manilkara zapota (L.) P. Royen Sapotaceae 1.78 2.68 3.17 2.55
Pithecellobium dulce (Roxb.) Benth. Fabaceae 2.52 1.33 2.23 2.03
Karwinskia humboldtiana (Schult.) Zucc. Rhamnaceae 4.30 0.44 0.20 1.65
Protium copal (Schltdl. & Cham.) Engl. Burseraceae 1.15 1.65 1.32 1.37
Sabal yapa C. Wright ex Becc. Arecaceae 1.85 0.85 1.39 1.36
Mosannona depressa (Baill.) Chatrou Annonaceae 1.09 1.19 1.41 1.23
Metopium brownei (Jacq.) Urb. Anacardiaceae 0.62 1.24 1.72 1.19
Gymnanthes lucida Sw. Euphorbiaceae 0.42 1.92 1.19 1.17
Cupania belizensis Standl. Sapindaceae 2.14 0.85 0.41 1.13
Lucuma campechiana Kunth Sapotaceae 1.04 1.38 0.81 1.08
Pimenta dioica (L.) Merr. Myrtaceae 1.02 1.01 0.89 0.97
Subtotal (18) 84.1 87.7 86.7 86.2
Other species (39, 38, 34) 15.9 12.2 13.2 13.8
Total 100 100 100 100

FPP = Forestry pilot plan; CFM = Community forestry management; PHD = Post-hurricane Dean; WA = Weighted average.

The three taxa with the greatest structural importance among the saplings were: Pouteria reticulata, Alseis yucatanensis Standl. (Rubiaceae), and Drypetes lateriflora (Sw.) Krug & Urb. (Putranjivaceae). Half of the outstanding species are commercially important timber trees regulated by the logging program and they can dominate the canopy, two examples are Dendropanax arboreus (L.) Decne. & Planch. (Araliaceae) and Metopium brownei (Jacq.) Urb. (Anacardiaceae) (Table 3).

Table 3 Importance index values for the best-represented species by management zone for saplings. 

Scientific name Family FPP CFM PHD WA
Pouteria reticulata (Engl.) Eyma Sapotaceae 27.39 24.27 23.60 25.09
Alseis yucatanensis Standl. Rubiaceae 7.28 9.08 6.68 7.68
Drypetes lateriflora (Sw.) Krug & Urb. Putranjivaceae 3.30 4.13 4.44 3.96
Sabal mauritiiformis (H. Karst.) Griseb. & H. Wendl. Arecaceae 5.43 2.38 3.77 3.86
Brosimum alicastrum Sw. Moraceae 3.56 3.43 1.94 2.98
Blomia prisca (Standl.) Lundell Sapindaceae 1.70 3.07 4.05 2.94
Damburneya patens (Sw.) Trofimov Lauraceae 3.23 4.63 0.93 2.93
Lucuma campechiana Kunth Sapotaceae 2.93 3.13 2.41 2.82
Bursera simaruba (L.) Sarg. Burseraceae 1.51 2.61 3.99 2.70
Manilkara zapota (L.) P. Royen Sapotaceae 3.41 2.68 1.18 2.42
Dendropanax arboreus (L.) Decne. & Planch. Araliaceae 2.30 2.33 2.47 2.37
Sabal yapa C. Wright ex Becc. Arecaceae 1.46 3.53 1.86 2.28
Trichilia minutiflora Standl. Meliaceae 2.72 1.67 2.28 2.22
Protium copal (Schltdl. & Cham.) Engl. Burseraceae 2.00 1.63 2.68 2.10
Gymnanthes lucida Sw. Euphorbiaceae 1.00 3.26 1.63 1.96
Pithecellobium dulce (Roxb.) Benth. Fabaceae 3.52 1.15 0.69 1.79
Mosannona depressa (Baill.) Chatrou Annonaceae 1.43 1.87 1.49 1.60
Guettarda combsii Urb. Rubiaceae 1.30 0.96 2.37 1.54
Subtotal (18) 75.47 75.81 68.46 73.25
Other species (50, 44, 52) 24.53 24.19 31.54 26.75
Total 100 100 100 100

FPP = Forestry pilot plan; CFM = Community forestry management; PHD = Post-hurricane Dean; WA = Weighted average.

Importance Value Index in poles. The three species with the greatest structural importance were: Manilkara zapota (Sapotaceae), Brosimum alicastrum (Moraceae), and Lucuma campechiana Kunth (Sapotaceae). A family or a single species may account for more than 30 % of the value of a structural parameter (Okuda et al., 2003; Dzib-Castillo et al., 2014), as was the case in this study of the Sapotaceae family for the IVI (Toledo-Aceves et al., 2009; Tadeo-Noble et al., 2019) (Table 4).

Table 4 Importance index values for the best-represented species by management zone for the poles. 

Scientific name Family FPP CFM PHD WA
Manilkara zapota (L.) P. Royen Sapotaceae 23.59 22.75 19.13 21.82
Brosimum alicastrum Sw. Moraceae 16.87 14.61 15.79 15.75
Lucuma campechiana Kunth Sapotaceae 5.47 7.20 5.69 6.12
Vitex gaumeri Greenm. Lamiaceae 6.39 5.53 6.14 6.02
Pseudobombax ellipticum (Kunth) Dugand Malvaceae 3.59 8.08 6.12 5.93
Simira salvadorensis (Standl.) Steyerm. Rubiaceae 7.41 3.41 4.51 5.11
Metopium brownei (Jacq.) Urb. Anacardiaceae 3.61 3.31 3.77 3.56
Bursera simaruba (L.) Sarg. Burseraceae 3.80 2.08 3.34 3.07
Lysiloma latisiliquum (L.) Benth. Fabaceae 0.75 1.82 6.27 2.95
Simarouba glauca DC. Simaroubaceae 2.17 3.14 2.91 2.74
Luehea speciosa Willd. Malvaceae 2.86 1.60 2.54 2.34
Pouteria reticulata (Engl.) Eyma Sapotaceae 1.77 3.04 1.59 2.13
Swartzia cubensis (Britton & P. Wilson) Standl. Fabaceae 2.14 2.57 1.66 2.13
Dendropanax arboreus (L.) Decne. & Planch. Araliaceae 1.82 1.31 3.13 2.09
Guettarda combsii Urb. Rubiaceae 1.37 2.41 1.98 1.92
Swietenia macrophylla King Meliaceae 1.69 2.95 0.93 1.86
Blomia prisca (Standl.) Lundell Sapindaceae 1.47 2.12 1.63 1.74
Piscidia piscipula (L.) Sarg. Fabaceae 1.75 0.89 2.56 1.73
Subtotal (18) 88.52 88.81 89.71 89.01
Other species (38, 37, 34) 11.48 11.19 10.29 10.99
Total 100 100 100 100

FPP = Forestry pilot plan; CFM = Community forestry management; PHD = Post-hurricane Dean; WA = Weighted average.

Richness and composition

The species richness and composition differed in each stage and management zone. The floristic composition was basically dominated by three families in the different samplings: Fabaceae (11, 16, 12), Rubiaceae (7, 6, 5), and Sapindaceae (6), which registered the highest number of genera and species; these data agree with those reported by García-Licona et al. (2014) and Granados-Victorino et al. (2017) in a medium sub-evergreen forest in Campeche and Hidalgo, respectively.

The recovery of the zones can be described as a unique and differentiated pattern over time (Carreón-Santos and Valdez-Hernández, 2014). The predominance of certain families is very similar to that observed in some medium-sized unmanaged forests (Navarro-Martínez et al., 2012; Carreón-Santos and Valdez-Hernández, 2014), unlike in other tropical scenarios in Mexico (Gutiérrez-Granados et al., 2011).

Diversity of species

Values between management zones and developmental stages are heterogeneous, for example, equity indices differed only among seedlings, but the richness was similar within management zones. Heterogeneity and equity at Noh Bec (H’=2.19-3.15; U=0.54-0.79) (Table 5) is considered to be similar to other jungles in Quintana Roo (H’=2.78-3.33; U=0.76-0.83) (Carreón-Santos and Valdez-Hernández, 2014) and below the values recorded for logged forests in Quintana Roo (H’=2.52-2.85; U=0.83-0.96) (Navarro-Martínez et al., 2012).

Table 5 Species richness and diversity values by forest management zone and stage of development of tree species. 

Stage of
development
Forest
management
zone
Species
richness
(individuals)
Genera
(Families)
Equity Inverse
Simpson
Margalef Shannon
Seedlings FPP 57 (2 178) a 50 (24) 0.65 a 7.83 a 7.29 a 2.64 a
CFM 56 (2 092) a 54 (26) 0.54 b 4.22 b 7.19 a 2.19 b
PHD 52 (2 051) a 49 (26) 0.57 b 4.84 b 6.69 b 2.26 b
Saplings FPP 68 (968) a 61 (29) 0.69 a 6.90 a 9.74 a 2.91 a
CFM 62 (1 031) b 56 (25) 0.73 a 8.34 a 8.79 b 3.02 a
PHD 70 (966) a 64 (27) 0.74 a 7.88 b 10.04 a 3.15 a
Poles FPP 50 (520) a 47 (22) 0.73 a 9.84 b 7.84 b 2.87 b
CFM 38 (404) b 35 (17) 0.79 a 11.55 a 6.17 a 2.87 a
PHD 42 (457) a 38 (20) 0.78 a 13.73 a 6.69 a 2.91 a

FPP = Forestry pilot plan; CFM = Community forestry management; PHD = Post-hurricane Dean. The values of a parameter followed by different letters between management areas differ significantly (p<0.05).

Fisher's Alpha Index (FAI) values exhibited no significant differences at the developmental stage level. The highest FAI values were registered in the saplings. The general disposition of the FAI point values was very similar between saplings and poles, unlike in the seedlings, the trend was reversed (Figure 3).

FPP = Forestry pilot plan; CFM = Community forestry management; PHD = Post-hurricane Dean.

Figure 3 Fisher's Alpha Index values with 95 % confidence intervals by stage of development and management area. 

These findings support the viability of sustainable forest management in these forests, and demonstrate that timber harvesting does not significantly affect species richness, as pointed out by Vester and Navarro-Martínez (2005). However, some influence on structural parameters and species composition is observed, but the impacts are minimal. Parallel research in Central African rainforests by Hall et al. (2003) and in Brazilian forests by Villela et al. (2006), who also concluded that forest harvesting through selective techniques does not compromise the biological diversity.

Conclusions

The various harvesting intensities applied in each forest management zone and at each serial stage reveal that these ecosystems can be compared, in terms of richness and diversity, with others located in Quintana Roo, Campeche and Veracruz. The tree structure patterns are heterogeneous, but distinguishable in some indices, particularly in Fisher's Alpha and structural dasometric values, unlike the diameter distribution which, although similar in trend within the categories, shows variations that are related to the forest harvesting regimes.

Structure, composition, and diversity studies are essential for timber forest management, as they provide key arguments and establish detailed protocols, along with a solid baseline for effective monitoring and evaluation of future timber harvesting activities.

The Noh Bec ejido, in the medium sub-evergreen forest of Quintana Roo, is a model of sustainable forest management that demonstrates how conservation and timber production can coexist, benefiting the environment and the community, preserving the ecosystem and contributing to sustainable development in Mexico.

Acknowledgments

The authors are grateful to the National Council for Humanities, Science and Technology (Consejo Nacional de Humanidades, Ciencia y Tecnología, Conahcyt) for the professorship granted to the first author. This work is part of the 943 Conhacyt Chair titled: “Silviculture of native species for the agroforestry systems of the state of Campeche” (“Silvicultura de especies nativas para los sistemas agroforestales del estado de Campeche”).

REFERENCES

Alvis G., J. F. 2009. Análisis estructural de un bosque natural localizado en zona rural del municipio de Popayán. Biotecnología en el sector Agropecuario y Agroindustrial 7(1):115-122. https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/710/338 . (6 de septiembre de 2023). [ Links ]

Beltrán-Rodríguez, L., J. I. Valdez-Hernández, M. Luna-Cavazos, A. Romero-Manzanares, ... y J. Blancas-Vázquez. 2018. Estructura y diversidad arbórea de bosques tropicales caducifolios secundarios en la Reserva de la Biosfera Sierra de Huautla, Morelos. Revista Mexicana de Biodiversidad 89(1):108-122. Doi: 10.22201/ib.20078706e.2018.1.2004. [ Links ]

Bonnell, T. R., R. Reyna-Hurtado and C. A. Chapman. 2011. Post-logging recovery time is longer than expected in an East African tropical forest. Forest Ecology and Management 261(4):855-864. Doi: 10.1016/j.foreco.2010.12.016. [ Links ]

Brown, K. A. and J. Gurevitch. 2004. Long-term impacts of logging on forest diversity in Madagascar. Proceedings of the National Academy of Sciences 101(16):6045-6049. Doi: 10.1073/pnas.0401456101. [ Links ]

Burivalova, Z., Ç. H. Şekercioğlu and L. P. Koh. 2014. Thresholds of logging intensity to maintain tropical forest biodiversity. Current Biology 24(16):1893-1898. Doi: 10.1016/j.cub.2014.06.065. [ Links ]

Carreón-Santos, R. J. y J. I. Valdez-Hernández. 2014. Estructura y diversidad arbórea de vegetación secundaria derivada de una selva mediana subperennifolia en Quintana Roo. Revista Chapingo Serie Ciencias Forestales y del Ambiente 20(1):119-130. Doi: 10.5154/r.rchscfa.2013.06.023. [ Links ]

Corlett, R. T. and R. B. Primack. 2011. Tropical rain forests: An ecological and biogeographical comparison. Wiley-Blackwell. Oxford, OX, United Kindom. 336 p. [ Links ]

Ding, Y., R. Zang, X. Lu and J. Huang. 2017. The impacts of selective logging and clear-cutting on woody plant diversity after 40 years of natural recovery in a tropical montane rain forest, south China. Science of the Total Environment 579:1683-1691. Doi: 10.1016/j.scitotenv.2016.11.185. [ Links ]

Dzib-Castillo, B., C. Chanatásig-Vaca y N. A. González-Valdivia. 2014. Estructura y composición en dos comunidades arbóreas de la selva baja caducifolia y mediana subcaducifolia en Campeche, México. Revista Mexicana de Biodiversidad 85(1):167-178. Doi: 10.7550/rmb.38706. [ Links ]

Edwards, D. P., J. A. Tobias, D. Sheil, E. Meijaard and W. F. Laurance. 2014. Maintaining ecosystem function and services in logged tropical forests. Trends in Eecology & Eevolution 29(9):511-520. Doi: 10.1016/j.tree.2014.07.003. [ Links ]

García-Licona, J. B., L. G. Esparza-Olguín y E. Martínez-Romero. 2014. Estructura y composición de la vegetación leñosa de selvas en diferentes estadios sucesionales en el ejido El Carmen II, Calakmul, México. Polibotánica (38):1-26. https://www.encb.ipn.mx/assets/files/encb/docs/polibotanica/revistas/pb38/calak.pdf . (7 de septiembre de 2023). [ Links ]

García, E. 2004. Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía de la Universidad Nacional Autónoma de México. Coyoacán, México D. F., México. 90 p. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1 . (7 de septiembre de 2023). [ Links ]

Gardner, T. A., J. Barlow, R. Chazdon, R. M. Ewers, … and N. S. Sodhi. 2009. Prospects for tropical forest biodiversity in a human-modified world. Ecology letters 12(6):561-582. Doi: 10.1111/j.1461-0248.2009.01294.x. [ Links ]

Granados-Victorino, R. L., A. Sánchez-González, D. Martínez-Cabrera y P. Octavio-Aguilar. 2017. Estructura y composición arbórea de tres estadios sucesionales de selva mediana subperennifolia del municipio de Huautla, Hidalgo, México. Revista Mexicana de Biodiversidad 88(1):122-135. Doi: 10.1016/j.rmb.2017.01.024. [ Links ]

Gutiérrez B., C., J. J. Ortiz D., J. S. Flores G., P. Zamora-Crescencio, M. R. Domínguez C. y P. Villegas. 2011. Estructura y composición florística de la selva mediana subcaducifolia de Nohalal-Sudzal Chico, Tekax, Yucatán, México. Foresta Veracruzana 13(1):7-14. https://www.redalyc.org/articulo.oa?id=49719786002 . (5 de septiembre de 2023). [ Links ]

Gutiérrez-Granados, G., V. Juárez and R. E. Alcalá. 2011. Natural and human disturbances affect natural regeneration of Swietenia macrophylla: Implications for rainforest management. Forest Ecology and Management 262(2):161-169. Doi: 10.1016/j.foreco.2011.03.019. [ Links ]

Hall, J. S., D. J. Harris, V. Medjibe and P. M. S. Ashton. 2003. The effects of selective logging on forest structure and tree species composition in a Central African forest: implications for management of conservation areas. Forest Ecology and Management 183(1-3):249-264. Doi: 10.1016/S0378-1127(03)00107-5. [ Links ]

Hayek, L. A. C. and M. A. Buzas. 2010. Surveying natural populations: Quantitative tools for assessing biodiversity. Columbia University Press. New York, NY, United States of America. 616 p. [ Links ]

Hutcheson, K. 1970. A test for comparing diversities based on the Shannon formula. Journal of Theoretical Biology 29(1):151-154. Doi: 10.1016/0022-5193(70)90124-4. [ Links ]

Ibarra-Manríquez, G., J. L. Villaseñor y R. Durán G. 1995. Riqueza de especies y endemismo del componente arbóreo de la Península de Yucatán, México. Boletin de la Sociedad Botánica de México 57:49-77. https://www.researchgate.net/profile/Guillermo-Ibarra-Manriquez/publication/306128522_Riqueza_de_especies_y_endemismo_del_componente_arboreo_de_la_Peninsula_de_Yucatan_Mexico/links/57b6f67608aea2f4aec38ce9/Riqueza-de-especies-y-endemismo-del-componente-arboreo-de-la-Peninsula-de-Yucatan-Mexico.pdf . (19 de septiembre de 2023). [ Links ]

Kammesheidt, L. 1998. Stand structure and spatial pattern of commercial species in logged and unlogged Venezuelan forest. Forest Ecology and Management 109(1-3):163-174. Doi: 10.1016/S0378-1127(98)00245-X. [ Links ]

López-Toledo, J. F., J. I. Valdez-Hernández, M. Á. Pérez-Farrera y V. M. Cetina-Alcalá. 2012. Composición y estructura arbórea de un bosque tropical estacionalmente seco en la Reserva de la Biósfera la Sepultura, Chiapas. Revista Mexicana de Ciencias Forestales 3(12):43-56. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11322012000400005 . (7 de septiembre de 2023). [ Links ]

Magurran, A. E. 1988. Ecological diversity and its measurement. Springer Dordrecht. Dordrecht, ZH, Netherlands. 179 p. [ Links ]

Magurran, A. E. 2013. Measuring biological diversity. Wiley-Blacwell. Hoboken, NJ, United States of America. 272 p. [ Links ]

Magurran, A. E. and B. J. McGill. 2011. Biological diversity: Frontiers in measurement and assessment. Oxford University Press. Oxford, OX, United Kingdom. 345 p. [ Links ]

Martínez, E. y C. Galindo-Leal. 2002. La vegetación de Calakmul, Campeche, México: clasificación, descripción y distribución. Boletín de la Sociedad Botánica de México 71:7-32. https://www.redalyc.org/articulo.oa?id=57707101 . (6 de septiembre de 2023). [ Links ]

Miranda, F. y E. Hernández-Xolocotzi. 2014. Los tipos de vegetación de México y su clasificación. Fondo de Cultura Económica (FCE) y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio). Tlalpan, México D. F., México. 214 p. [ Links ]

Monárrez-González, J. C., G. Pérez-Verdín, C. López-González, M. A. Márquez-Linares y M. del S. González-Elizondo. 2018. Efecto del manejo forestal sobre algunos servicios ecosistémicos en los bosques templados de México. Madera y Bosques 24(2):e2421569. Doi: 10.21829/myb.2018.2421569. [ Links ]

Muñoz, J. C., A. B. Hurtado y N. Norden. 2017. Composición florística de tres fragmentos de bosque altoandino en los alrededores de la sabana de Bogotá: Parcelas permanentes del Proyecto Rastrojos. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá D. C., CUN, Colombia. 27 p. http://repository.humboldt.org.co/bitstream/handle/20.500.11761/34202/17-028PSMunoz_Juan.pdf?sequence=1&isAllowed=y . (7 de septiembre de 2023). [ Links ]

Navarro-Martínez, A., R. Durán-García y M. Méndez-González. 2012. El impacto del huracán Dean sobre la estructura y composición arbórea de un bosque manejado en Quintana Roo, México. Madera y Bosques 18(1):57-76. https://www.redalyc.org/pdf/617/61724713005.pdf . (7 de septiembre de 2023). [ Links ]

Negreros-Castillo, P., L. Cámara-Cabrales, M. S. Devall, M. A. Fajvan, … y A. Navarro-Martínez. 2014. Silvicultura de las selvas de caoba en Quintana Roo, México: Criterios y recomendaciones. Comisión Nacional Forestal (Conafor). Zapopán, Jal., México. 92 p. https://www.fs.usda.gov/nrs/pubs/jrnl/2014/nrs_2014_negreros-castillo_ESP_001.pdf . (7 de septiembre de 2023). [ Links ]

Okuda, T., M. Suzuki, N. Adachi, E. S. Quah, N. A. Hussein and N. Manokaran. 2003. Effect of selective logging on canopy and stand structure and tree species composition in a lowland dipterocarp forest in peninsular Malaysia. Forest Ecology and Management 175(1-3):297-320. Doi: 10.1016/S0378-1127(02)00137-8. [ Links ]

Padrón e Historial de Núcleos Agrarios (Phina). 2018. Ficha del Núcleo Agrario Ejido Noh Bec. Fol. Ejidos y Comunidades: 23002005114061937R. Registro Agrario Nacional (RAN). http://www.ran.gob.mx/ran/index.php/sistemas-de-consulta/phina . (7 de septiembre de 2023). [ Links ]

Pat-Aké, I., L. del C. Cámara-Cabrales, S. Ward, P. Martínez-Zurimendi, … y N. Sorensen. 2018. Efecto del huracán Dean en la dinámica estructural de selvas bajo manejo forestal en Quintana Roo, México. Madera y Bosques 24(2):e2421585. Doi: 10.21829/myb.2018.2421585. [ Links ]

Pennington, T. D. y J. Sarukhán. 2005. Árboles tropicales de México. Manual para la identificación de las principales especies. Universidad Nacional Autónoma de México, Dirección General de Publicaciones y Fomento Editorial, y Fondo de Cultura Económica. Coyoacán, México D. F., México. 523 p. [ Links ]

Pimm, S. L. 1984. The complexity and stability of ecosystems. Nature 307(5949):321-326. Doi: 10.1038/307321a0. [ Links ]

Rousseeuw, P. J. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20:53-65. Doi: 10.1016/0377-0427(87)90125-7. [ Links ]

Sánchez S., O. and G. A. Islebe. 1999. Hurricane Gilbert and structural changes in a tropical forest in south-eastern Mexico. Global ecology and Biogeography 8(1):29-38. http://www.jstor.org/stable/2997830 . (7 de septiembre de 2023). [ Links ]

Seaby, R. M. H. and P. A. Henderson. 2007. Species Diversity and Richness (Version 4.1.2). Pisces Conservation Ltd. Lymington, HAM, England. http://www.pisces-conservation.com/softdiversity.html . (10 de septiembre de 2022). [ Links ]

Solow, A. R. 1993. A simple test for change in community structure. Journal of Animal Ecology 62(1):191-193. https://www.jstor.org/stable/pdf/5493.pdf . (7 de septiembre de 2023). [ Links ]

Tadeo N., A. E., H. M. De Los Santos P., G. Ángeles P. y J. A. Torres P. 2014. Muestreo por conglomerados para manejo forestal en el Ejido Noh Bec, Quintana Roo. Revista Mexicana de Ciencias Forestales 5(25):64-83. Doi: 10.29298/rmcf.v5i25.304. [ Links ]

Tadeo-Noble, A. E., J. I. Valdez-Hernández, L. Beltrán-Rodríguez y E. García-Moya. 2019. Efecto del aprovechamiento forestal sobre la estructura y diversidad arbórea en selvas tropicales de Quintana Roo, México. Bosque 40(2):129-140. Doi: 10.4067/S0717-92002019000200129. [ Links ]

Toledo-Aceves, T., S. Purata-Velarde and C. M. Peters. 2009. Regeneration of commercial tree species in a logged forest in the Selva Maya, Mexico. Forest Ecology and Management 258(11):2481-2489. Doi: 10.1016/j.foreco.2009.08.033. [ Links ]

Vester, H. F. M. and M. A. Navarro-Martínez. 2005. Ecological issues in community tropical forest management in Quintana Roo, Mexico. In: Bray, D. B., L. Merino-Pérez and D. Barry (Edits.). The community forests of Mexico: Managing for sustainable landscapes. University of Texas Press. Austin, TX, United States of America. pp. 183-214. [ Links ]

Villela, D. M., M. T. Nascimento, L. E. O. C. de Aragão and D. M. Da Gama. 2006. Effect of selective logging on forest structure and nutrient cycling in a seasonally dry Brazilian Atlantic forest. Journal of Biogeography 33(3):506-516. Doi: 10.1111/j.1365-2699.2005.01453.x. [ Links ]

Zamora C., P., G. García G., J. S. Flores G. y J. J. Ortiz. 2008. Estructura y composición florística de la selva mediana subcaducifolia en el sur del estado de Yucatán, México. Polibotánica (26):39-66. https://www.scielo.org.mx/pdf/polib/n26/n26a2.pdf . (7 de septiembre de 2023). [ Links ]

Zar, J. H. 2010. Biostatistical analysis. Pearson. Upper Saddle River, NJ, United States of America. 960 p. [ Links ]

Received: August 28, 2023; Accepted: November 27, 2023

Conflict of interest

The authors declare that they have no conflict of interest.

Contribution by author

Alfredo Esteban Tadeo-Noble: conceptualization and study design, statistical analysis and writing of the final manuscript; Edmundo García Moya: training, capabilities development and review of the manuscript; Juan Ignacio Valdez Hernández: conceptualization and study co-design; Lauro López Mata: review and monitoring of results; Mario Luna Cavazos: formation, analysis and interpretation of results; Héctor Manuel De Los Santos Posadas: statistical counseling, interpretation of results and review of the final manuscript; José Luis Hernández Stefanoni: counseling in the sample design, interpretation of results and review of the final manuscript.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons