Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Geofísica internacional
versión On-line ISSN 2954-436Xversión impresa ISSN 0016-7169
Geofís. Intl vol.44 no.1 Ciudad de México ene./mar. 2005
Articles
Chemical and isotopic study of thermal springs and gas discharges from Sierra de Chiapas, México
1 Università degli Studi di Firenze Department of Earth Sciences, Via G. La Pira 4, 50121 Florence, Italy.
2CNR-Institute of Geosciences & Earth Resources, Via G. La Pira 4, 50121 Florence (Italy).
3 Institute of Geophysics, UNAM, D.F., 04510 Mexico City (Mexico).
4 CNR-Institute of Geosciences & Earth Resources, Via G. Moruzzi 1, 56124 Pisa (Italy).
5 Università degli Studi di Urbino Institute of Volcanology and Geochemistry, Loc. La Crocicchia, Ex-Sogesta 61029 Urbino (Italy).
Thermal water and gas discharges south-east of El Chichón volcano, Mexico are associated mainly with NW-SE oriented fault systems. Spring discharges include i) waters with Na-Cl composition and TDS>3000 mg/L; ii) waters with Ca-SO4 composition and TDS values between 1400 and 2300 mg/L; iii) waters with Na-Cl composition and TDS of 800 to 2400 mg/L and sulphate content up to 650 mg/L and iv) waters with Ca-HCO3 composition and low salinity (TDS <250mg/L). Most of these waters are associated with free-gas discharges of N2 (up to 93 % by vol.), CO2 (2.4 to 31.2 % by vol.) and Ar (up to 1.25 % by vol.) with a predominant meteoric origin. H2S is present only in gas samples collected at El Azufre (up to 1.1 % by vol.). The δ13C CO2 values are always below -9.7% (PDB) and suggest a partially biogenic origin for CO2.
Chemical and isotopic features of spring discharges indicate that fluid circulation in the Sierra de Chiapas is mainly regulated by meteoric waters that tend to infiltrate the upper and middle-Cretaceous carbonate units up to the lower Cretaceous-upper Jurassic evaporitic formations (by López-Ramos, 1982). The latter provide the main source of the species in solution.
No evidence for high-to-medium enthalpy systems at depth beneath the Sierra de Chiapas has been found.
KEY WORDS: Isotopes; chemistry; thermal springs; water; Chiapas; Mexico
La Sierra de Chiapas localizada en el Sureste de México, se caracteriza por la presencia de descargas de gas y agua. La mayoría de los manantiales termales se asocian a rocas volcánicas Terciarias a lo largo de fallas regionales con orientación NO-SE.
Las descargas termales se dividen en cuatro grupos: i) aguas con composición Na-Cl y Sólidos Disueltos Totales (SDT) >3000 mg/L; ii) aguas con composición Ca-SO4 y valores de SDT entre 1400 y 2300 mg/L; iii) aguas con composición Na-Cl, bajos contenidos de SDT (800 2400 mg/L) y un contenido de sulfato alto (hasta 650 mg/L) y iv) aguas con una composición Ca-HCO3 y salinidad baja (SDT <250mg/L). La mayoría de estas aguas están asociadas con descargas de gas compuestas por N2 (hasta 93 % en vol.), CO2 (2.4-31.2 % en vol.) y Ar (hasta 1.25 % en vol.) con origen predominantemente meteórico. H2S aparece únicamente en las muestras de gas colectadas en El Azufre (hasta 1.1 % en vol.). Los valores de δ13C-CO2 comúnmente inferiores a -9.7% (PDB) sugieren un origen parcialmente biogénico del CO2.
Los parámetros químicos e isotópicos de los manantiales indican que la circulación de fluidos en la Sierra de Chiapas se regula principalmente por la infiltración de aguas meteóricas en rocas carbonatadas del Cretácico medio-tardío hasta las formaciones evaporíticas del Jurásico tardío-Cretácico temprano. Estas últimas representan la fuente principal de las especies en solución de las aguas.
No se encontraron evidencias de la presencia de sistemas con entalpías medias a altas por debajo de la Sierra de Chiapas.
PALABRAS CLAVE: Isótopos; química de manantiales; Chiapas; México
BIBLIOGRAPHY
BURBACH, V. G.; C. FROHLICH; D. W. PENNINGTON and T. MATUMOTO, 1984. Seismicity and tectonics of the subducted Cocos Plate. J. Geophys. Res., 89, 7719-7735. [ Links ]
CANUL, R. F. and V. L. ROCHA, 1982. Informe geológico de la zona geotérmica de "El Chichónal", Chiapas. Unpublished Report Comisión Federal De Electricidad, Morelia, Michoacán, México, 38p. [ Links ]
CAPAUL, W. A., 1987. Volcanoes of the Chiapas volcanic belt, Mexico. Thesis. Michigan Tecnological University, pp 93. [ Links ]
CAPACCIONI, B.; Y. TARAN; F. TASSI; O. VASELLI; F. MANGANI and J. L. MACÍAS, 2004. Source conditions and degradation processes of light hydrocarbons in volcanic gases: an example from El Chichón volcano (Chiapas State, Mexico). Chem. Geol., 206, 81-96. [ Links ]
CRAIG, H., 1963. Isotopic variations in meteoric waters. Science, 123, 1702-1703. [ Links ]
DAMON, P. E. and E. MONTESINOS, 1978. Late Cenozoic volcanism and metallogenesis over an active Benioff zone in Chiapas, Mexico. Arizona Geol. Soc. Digest, 11, 155-168. [ Links ]
DE LA ROSA, J. L.; A. EBOLI and M. DÁVILA, 1989. Geología del Estado de Chiapas. Subdirección de Construcción, Comisión Federal de Electricidad. Harla, Mexico City, 192 p. [ Links ]
DUFFIELD, W. A.; R. I. TILLING and R. CANUL, 1984. Geology of El Chichón Volcano, Chiapas, Mexico. J. Volcanol. Geotherm. Res., 20, 117-132. [ Links ]
FERRUSQUIA-VILLAFRANCA, I., 1996. Contribución al conocimiento geológico de Chiapas-El área de Ixtapa-Soyaló. Boletín 109, Instituto de Geología, UNAM, 130 p. [ Links ]
FOURNIER, R. O. and J. J. ROWE, 1966. Estimation of underground temperatures from the silica content of water from hot spring and wet-steam wells. Am. Jour. Scie., 264, 685-697. [ Links ]
GARCÍA-PALOMO, A.; J. L. MACÍAS and J. M. ESPÍNDOLA, 2004. Strike-slip faults and K-Alkaline volcanism at El Chichón volcano, southeastern Mexico. J. Volcanol. Geotherm. Res., 136, 247-268. [ Links ]
GIGGENBACH, W. F., 1975. A simple method for the col-lection and analyses of volcanic gas sample. Bull. Volcanol., 39, 132-145. [ Links ]
GIGGENBACH, W. F., 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geoch. Cosmoch. Acta, 52, 2749-2765. [ Links ]
GIGGENBACH, W. F. and R. CORRALES, 1992. Isotopic and chemical composition of water and steam discharges from volcanic-magmatic-hydrothermal system of the Guanacaste Geothermal Province, Costa Rica. Appl. Geochem., 7, 309-322. [ Links ]
GIGGENBACH, W. F.; R. GONFIANTINI; B. L. JANGI and A. H. TRUESDELL, 1983. Isotopic and chemical composition of Parbaty valley geothermal discharges, NW-Himalaya. Geotherm., 12, 199-222. [ Links ]
HAVSKOV, J.; S. DE LA CRUZ-REYNA; S. SINGH; F. MEDINA and C. GUTIÉRREZ, 1983. Seismic activity related to the March-April, 1982 eruptions of El Chichón volcano, Chiapas, Mexico. Geophys. Res. Let., 10, 293-296. [ Links ]
LÓPEZ-RAMOS, E. L., 1979. Geología de México. Edición Escolar, Tomo III, segunda edición, México, D.F., México, 446 pp. [ Links ]
LUHR, J. F.; I. S. E. CARMICHAEL and J. C. VAREKAMP, 1984. The 1982 eruptions of El Chichón Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. J. Volcanol. Geotherm. Res., 23, 69-108. [ Links ]
MACÍAS, J. L.; J. M. ESPÍNDOLA; Y. TARAN and P. A. GARCÍA, 1997. Explosive volcanic activity during the last 3,500 years at el Chichon volcano, Mexico. IAVCEI, General Assembly, Puerto Vallarta, Mexico. Field trip guide, 53 p. [ Links ]
MACÍAS, J. L.; J. L. ARCE; J. C. MORA; J. M. ESPÍNDOLA; R. SAUCEDO and P. MANETTI, 2003. The ~550 BP plinian eruption of el Chichon volcano, Chiapas, Mexico: Explosive volcanism linked to reheating of a magma chamber. J. Geophys. Res., 108(b12 ), 2569. [ Links ]
MAGRO, G.; G. RUGGIERI; G. GIANELLI; S. BELLANI and G. SCANDIFFIO, 2003, Helium isotopes in paleo fluids and present-day fluids of the Larderello geothermal field: Constraints on the heat source. J. Geophys. Res., 108(B9 ), doi: 10.1029-/2001JB001590, 2003. [ Links ]
MARTEL, D. J.; J. DEAK; P. DOVENYI; F. HORVATH; R. K. O'NIONS; E. R. OXBURGH; L. STEGENA and M. STUTE, 1989. Leakage of helium from pannonian basin. Nature, 342, 908-912. [ Links ]
MAMYRIN, B. A. and I. N. TOLSTIKHIN, 1984. Helium isotopes in natura. In: Fyfe, W.S. (Ed), Developments in Geochemistry, Series 3, Elsevier, Amsterdam. [ Links ]
MENESES-ROCHA, J. J., 1991. Tectonic Development of the Ixtapa Graben, Chiapas, Mexico. Ph. D., University of Texas, Austin, 308 pp. [ Links ]
MINISSALE, A.; G. MAGRO; G. MARTINELLI; O. VASELLI and F. TASSI, 2000. Fluid geochemical transect in the Northen apennines(central-northern Italy): fluid genesis and migration and tectonic implications. Tectonophysics, 319, 199-222. [ Links ]
MONTES DE OCA, S., 1979. Geología petrolera de la Sierra de Chiapas. Asoc. Mex. Geol. Pétrol., Bol., 31 (1-2 ), 67-97. [ Links ]
MUGICA, R., 1987, Estudio petrogenético de las rocas ígneas y metamórficas en el Macizo de Chiapas: Instituto Mexicano del Petróleo, C-2009. [ Links ]
NENCETTI, A., 2001. Geochimica dei fluidi del Vulcano El Chichón (Chiapas, Messico). Unpublished Ms Thesis, University of Florence (Italy), pp 181. (In Italian). [ Links ]
NIXON, G. T., 1982. The relationship between Quaternary volcanism and the seismic structure of subducted ocean litosphere. Bull. Geoc. Soc. Am., 93, 514-523. [ Links ]
OZIMA, M. and F. A. PODOSEK, 2002. Noble gas geochemistry. Cambridge University Press, Second Edition, 286 pp. [ Links ]
PROL-LEDESMA, R. M. and M. G. JUÁREZ, 1986. Geothermal map of Mexico. J. Volcanol. Geotherm. Res., 28, 351-362. [ Links ]
ROUWET, D.; Y. A. TARAN and N. R. VARLEY, 2004. Dynamics and mass balance of El Chichón crater lake, Mexico. Geofís. Int., 43, 427-434. [ Links ]
TARAN, Y.; T. P. FISCHER; B. POKROVSKY; Y. SANO; M. A. ARMIENTA and J. L. MACÍAS, 1998. Geochemistry of the volcano-hydrothermal system of El Chichón Volcano, Chiapas, Mexico. Bull. Volcanol., 59, 436-449. [ Links ]
TASSI, F.; O. VASELLI; B. CAPACCIONI; J. L. MACÍAS; A. NENCETTI; G. MONTEGROSSI and G. MAGRO, 2003. Chemical composition of fumarolic gas and spring discharges from El Chichón volcano, Mexico: causes and implications of the changes detected over the period 1998-2000. J. Volcanol. Geotherm. Res., 123, 105-121. [ Links ]
XU, S.; S. NAKAI; H. WAKITA; X. WANG and X. FENG, 1997. Effects of hydrothermal processes on the chemical and isotopic composition of mantle-derived gases in SE China. Pergamon, Geothermics, 26, 2, 179-192. [ Links ]
Received: January 23, 2003; Accepted: October 19, 2004