SciELO - Scientific Electronic Library Online

 
vol.44 número2The RESNOM seismic catalog and its bearing on the seismicity of Northwestern Mexico índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Geofísica internacional

versión On-line ISSN 2954-436Xversión impresa ISSN 0016-7169

Geofís. Intl vol.44 no.2 Ciudad de México abr./jun. 2005

 

Articles

Simulation of seismograms in a 2-D viscoelastic Earth by pseudospectral methods

José M. Carcione1 

Hans B. Helle2 

Géza Seriani1 

Milton P. Plasencia Linares3 

1 Istituto Nazionale di Oceanografía e di Geofísica Sperimentale (OGS), Borgo Grotta Gigante 42c, Sgonico, Trieste, Italy, Fax: 0039 040 327521 Email: jcarcione@ogs.trieste.it

2 Norsk Hydro a.s., 0 & E Research Centre, N-5020 Bergen, Norway; Fax: +47 55 996920 Email: hans.b.helle@hydro.com

3 Departamento de Sismología, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata Paseo del Bosque sin, B1900WA La Plata, Argentina, Fax: 0054 221 4236591 Email: milton@fcaglp.unlp.edu.ar


ABSTRACT

Using an improved global pseudospectral modeling algorithm we synthesize seismograms generated by oceanic and continental earthquakes. Attention is given to attenuation, to explicit modeling of boundary conditions at the ocean-bottom interface, simulation of the Rayleigh window and interface-wave propagation. The algorithm is based on Fourier and Chebyshev differential operators and a domain-decomposition technique - one grid for the fluid and another grid for the solid. Wave propagation in the oceanic and continent crusts and mantle is modeled by using a viscoelastic stress-strain relation based on memory variables.

The main physical phenomena associated with an ocean-crust system are modeled, including Scholte waves, leaking Rayleigh waves, dispersive modes, and the Rayleigh-window phenomenon due to a minimum in the reflection coefficient of the ocean bottom, which has not been simulated with direct methods. In particular, we model Rayleigh modes (mainly the M 11 mode), and coupled Rayleigh-Scholte waves, for which the dispersion relation is solved in simple cases. Also, we model the effects of random inhomogeneities in the crust and mantle by using a von Kármán autocovariance probability function, which simulates scattering-Q-effects.

The 2-D modeling code allows general material variability, and a complete and accurate characterization of the seismic response of oceanic and continental earthquakes. A synthetic seismogram for an earthquake in the South Atlantic region is provided.

KEY WORDS: Seismogram; earthquake; attenuation; modeling; Rayleigh waves; Scholte waves; Rayleigh window

RESUMEN

El algoritmo de modulación seudoespectral es mejorado y aplicado a la simulación de sismogramas generados por sismos oceánicos y continentales, como atención a la atenuación y a la modelación explícita de condiciones a la frontera en el fondo oceánico y a la simulación de la ventana de Rayleigh y la propagación en interfases. El algoritmo se basa en los operadores diferenciales de Fourier y de Chebyshev con una técnica de decomposición de dominios, una malla para el fluido y otra para el sólido. Para la propagación se usa una relación de esfuerzo-deformación basada en variables de memoria. Entre los fenómenos modelados se incluyen las ondas de Scholte, las ondas evanescentes de Rayleigh y los modos dispersivos, así como la ventana de Rayleigh, un mínimo del coeficiente de reflexión en el fondo oceánico que nunca ha sido simulado con métodos directos. Hemos modelado los modos de Rayleigh (principalmente M 11) y las ondas acopladas Rayleigh-Scholte, resolviendo la relación de dispersión para casos simples. Se modeló también efectos de inhomogeneidades aleatorias en la corteza y manto mediante una función de autocovarianza tipo von Kármán que simula los efectos de dispersión de ondas.

El programa bidimensional permite una variación material general y una caracterización completa y exacta de la respuesta para sismos oceánicos y continentales. Se desarrolla un ejemplo para un sismograma originado en la región del Atlántico Sur.

PALABRAS CLAVE: Sismograma; sismo; atenuación; modelado; ondas de Rayleigh; ondas de Scholte; ventana de Rayleigh

BIBLIOGRAPHY

AKI, K. and P. G. RICHARDS, 1980. Quantitative seismology, theory and methods, Vol. 1, W. H. Freeman and Company. [ Links ]

BEN-MENAHEM, A., 1965. Observed attenuation and Q values of seismic surface waves in the upper mantle. J. Geophys. Res., 70, 4641-4651. [ Links ]

BEN-MENAHEM, A. and S. J. SINGH, 1981. Seismic waves and sources, Springer-Verlag. [ Links ]

BERENGER, J. P., 1984. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114, 185-200. [ Links ]

BERG, P.; F. IF; P. NIELSEN and O. SKOVGAARD, 1994. Analytical reference solutions. In: Modeling the Earth for oil exploration, K. Helbig, ed., Pergamon Press, 421-427. [ Links ]

BIOT, M. A., 1952. The interaction of Rayleigh and Stoneley waves in the ocean bottom. Bull. Seism. Soc. Am., 42, 81-93. [ Links ]

BORCHERDT, R. D.; G. GLASSMOYER and L. WENNERBERG, 1986. Influence of welded boundaries in anelastic media on energy flow, and characteristics of p, S-I and S-II waves: observational evidence for in-homogeneous body waves in low-loss solids. J. Geophys. Res., 91, 11503-11118. [ Links ]

BREKHOVSKIKH, L. M. and Y. P. LYSANOV, 1991. Fundamentals of ocean acoustics, Springer-Verlag. [ Links ]

BROWER, N. G.; D. E. HIMBERGER and W. G. MAYER, 1979. Restrictions on the existence of leaky Rayleigh waves. IEEE Trans. on Sonics and Ultrasonics, SU-26, 306-308. [ Links ]

BUTLER, R. and C. LOMNITZ, 2002. Coupled seismoacoustic modes on the seafloor. Geophys. Res. Lett., 29, 57-61. [ Links ]

CAPDEVILLE, Y.; E. STUTZMANN and J. MONTAGNER, 2000. Effect of a plume on long-period surface waves computed with normal-mode coupling. phys. Earth plant. Inter., 119, 54-71. [ Links ]

CARCIONE, J. M., 1991. Domain decomposition for wave propagation problems. J. Sci. Comput., 6 (4), 453-472. [ Links ]

CARCIONE, J. M., 1992. Modeling anelastic singular surface waves in the Earth. Geophysics, 57, 781-792. [ Links ]

CARCIONE, J. M., 1994a. Time-dependent boundary conditions for the 2-D linear anisotropic-viscoelastic wave equation, Numer. Meth. Part. Diff. Equations, 10, 771-791. [ Links ]

CARCIONE, J. M., 1994b. The wave equation in generalized coordinates. Geophysics, 59, 1911-1919. [ Links ]

CARCIONE, J. M., 1996. A 2-D Chebyshev differential operator for the elastic wave equation. Comput. Methods Appl. Mech. Engrg., 130, 33-45. [ Links ]

CARCIONE, J. M., 2001. Wave Fields in Real Media. Theory and numerical simulation of wave propagation in anisotropic, anelastic and porous media, Pergamon Press. [ Links ]

CARCIONE, J. M.; G. HERMAN and F. P. E. TEN KROODE, 2002. Seismic modeling. Geophysics, 67, 1304-1325. [ Links ]

CHAPMAN, D. M. F. and P. R. STAAL, 1991. A summary of DREA observation of interface waves at the seabed. In: J.M. Hovem, M.D. Richardson and R.D. Stoll (eds.) Shear waves in Marine Sediments, Kluwer Academic Publ., 177-184. [ Links ]

COUTEL, F. and P. MORA, 1998. Simulation based comparison of four site-response estimation techniques. Bull. Seism. Soc. Am., 88, 30-42. [ Links ]

DE HOOP, A. T. and J. H. M. T. VAN DER HIJDEN, 1983. Generation of acoustic waves by an impulsive line source in a fluid/solid configuration with a plane boundary. J. Acoust. Soc. Am., 74, 333-342. [ Links ]

EMMERICH, H. and M. KORN, 1987. Incorporation of attenuation into time-domain computations of seismic wave fields. Geophysics, 52, 1252-1264. [ Links ]

EWING, W. M., W. S. JARDETZKY and F. PRESS, 1957. Elastic waves in layered earth, McGraw-Hill Book Co., Inc. [ Links ]

FORSYTH, D. W., 2000. Excitation and propagation of short-period surface waves in young seafloor. In: Proceedings of the 22nd Annual DoD/DOE Seismic Research Symposium, New Orleans, 13-15 September, Paper 04-03. [ Links ]

FRANKEL, A. and R. W. CLAYTON>, 1986. Finite difference simulations of seismic scattering: implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity. J. Geophys. Res., 91(B6 ), 6465-6489. [ Links ]

GOTTLIEB, D. and S. ORSZAG, 1977. Numerical analysis of spectral methods: Theory and applications, CBMS Regional Conference Series in Applied Mathematics 26, Society for Industrial and Applied Mathematics, SIAM. [ Links ]

HOLLIGER, K., 1997. Seismic scattering in the upper crystalline crust based on evidence from sonic logs. Geophys. J. Internat., 128, 65-72. [ Links ]

IGEL, H., 1999. Wave propagation in three-dimensional spherical sections by the Chebyshev spectral method. Geophys. J. Int., 136, 559-566. [ Links ]

KESSLER, D. and D. KOSLOFF, 1991. Elastic wave propagation using cylindrical coordinates. Geophysics, 56, 2080-2089. [ Links ]

KINDELAN, M.; G. SERIANI and P. SGUAZZERO, 1989. Elastic modelling and its application to amplitude versus angle interpretation. Geophys. Prosp., 37, 3-30. [ Links ]

KOMATITSCH, and J. TROMP, 2002a. Spectral-element simulations of global seismic wave propagation - I. Validation. Geophys. J. Int., 149, 390-412. [ Links ]

KOMATITSCH, and J. TROMP, 2002b. Spectral-element simulations of global seismic wave propagation - II. Three-dimensional models, oceans, rotation and self-gravitation. Geophys. J. Int., 150, 303-318. [ Links ]

KOSLOFF, D. and H. TAL-EZER, 1993. A modified Chebyshev pseudospectral method with an O(N4) time step restriction. J. Comp. Phys., 104, 457-469. [ Links ]

LOMNITZ, C.; R. BUTLER and O. NOVARO, 2002. Coupled modes at interfaces: A review. Geofís. Int., 41, 77-86. [ Links ]

MOONEY, W. D.; G. LASKE and G. MASTERS, 1998. CRUST 5.1: A global crustal model at 5 degrees by 5 degrees. J. Geophys. Res., 103(B1 ), 727-747. [ Links ]

PHINNEY, R. A., 1961. Propagation of leaking interface waves. Bull. Seism. Soc. Am., 51, 527-555. [ Links ]

PRESS, F. and M. EWING, 1950. Propagation of explosive sound in a liquid layer overlying a semi-infinite elastic solid, Geophysics, 15, 426-446. [ Links ]

PRIOLO, E., 1999. 2-D spectral element simulation of destructive ground shaking in Catania (Italy). J. Seismol., 3, 289-309. [ Links ]

PRIOLO, E.; J. M. CARCIONE and G. SERIANI, 1994. Numerical simulation of interface waves by high-order spectral modeling techniques. J. Acous. Soc. Am., 95, 681-693. [ Links ]

SERIANI, G., 1998. 3-D large scale wave propagation modeling by a spectral-element method on a Cray T3E multiprocessor. Comput. Methods Appl. Mech. Eng., 164, 235-247. [ Links ]

TAKEUCHI, N.; R. GELLER and P. CUMMINS, 2000. Complete synthetic seismograms for 3-D heterogeneous Earth models computed using modified DSM operators and their applicability to inversion for Earth structure. phys. Earth plant. Inter., 119, 25-36. [ Links ]

TESSMER, E.; D. KESSLER; D. KOSLOFF and A. BEHLE, 1992. Multi-domain Chebyshev-Fourier method for the solution of the equations of motion of dynamic elasticity. J. Comput. Phys., 100, 355-363. [ Links ]

TESSMER, E., 1995. 3-D seismic modelling of general material anisotropy in the presence of the free surface. Geophys. J. Int., 121, 557-575. [ Links ]

THOMAS, C.; H. IGEL; M. WEBER and F. SCHERBAUM, 2000. Acoustic simulation of P-wave propagation in a heterogeneous spherical earth: numerical method and application to precursor waves to PKPdf. Geophys. J. Int., 141, 6441-6464. [ Links ]

VUAN, A.; M. RUSSI and G. F. PANZA, 2000. Group velocity tomography in the subantarctic Scotia Sea region. Pure Appl. Geophys ., 157, 1337-1357. [ Links ]

WINKLER, K. and A. NUR, 1979. Pore fluids and seismic attenuation in rocks. Geophys. Res. Lett., 6, 1-4. [ Links ]

ZENER, C., 1948. Elasticity and anelasticity of metals, University of Chicago Press. [ Links ]

Received: June 06, 2004; Accepted: November 15, 2004

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License