Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.50 no.4 México ago. 2004
Investigación
A nonlinear Rξ-gauge for the electroweak theory
J.G. Méndez and J.J. Toscano
Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado Postal 1152, Puebla, Pue., México.
Recibido el 5 de septiembre de 2002;
Aceptado el 18 de febrero de 2004.
Abstract
A Gauge-fixing procedure for the electroweak theory, based in the BRST symmetry and covariance under the electromagnetic group, is proposed. It is found that in order to have a renormalizable theory, four-ghost interactions must be included in the BRST invariant action, since in this class of gauges these couplings are induced at the one-loop level. This type of gauges allows us to remove several unphysical vertices appearing in conventional linear gauges, which greatly simplifies the loop calculations, since the resultant theory satisfies QED-like Ward identities. Explicit expressions for the Lagrangian of the bosonic sector, including the corresponding ghost term, are presented.
Keywords: Electroweak theory; nonlinear gauges.
Resumen
Se propone un procedimiento de fijación de la norma para la teoría electrodébil basado en la simetría BRST y covariancia bajo el grupo electromagnético. Se encuentra que, a fin de tener una teoría renormalizable, se deben incluir en la acción, invariante bajo BRST, interacciones de cuatro ghosts, ya que en esta clase de normas estos acoplamientos se inducen a orden de un rizo. Este tipo de normas nos permite remover varios vértices no físicos que aparecen en las normas lineales convencionales, lo cual simplifica grandemente los cálculos de loop, ya que la teoría resultante satisface identidades de Ward tipo QED. Se presentan expresiones explícitas para el lagrangiano del sector bosónico, incluyendo el término correspondiente para los ghost.
Descriptores: Teoría electrodébil; normas no lineales.
PACS: 11.15.-q; 11.15.Ex; 12.15.-y
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgment
We would like to thank J.M. Hernández for his comments. JGM acknowledges support from CONACYT (México) under grant G28102-E. JJT also acknowledges support from CONACYT and SNI (México).
References
1. P.A.M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University, New, York, 1964); [ Links ] D.M. Gitman and I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990); [ Links ] K. Sundermeyer, Constrained Dynamics (Springer, Berlin, 1982); [ Links ] M. Henneaux and C. Teit-elboim, Quantization of Gauge Systems (Princeton University Press, Princeton, New Jersey, 1991). [ Links ]
2. G. t'Hooft and M.J.G. Veltman, Nucl. Phys. B 50 (1972) 318. [ Links ]
3. K. Fujikawa, B.W. Lee, and A.I. Sanda, Phys. Rev. D 6 (1972) 2923, [ Links ] B.W. Lee and J. Zinn-Justin, Phys. Rev. D5 (1972) 3121, 3137,3155, [ Links ] D7 (1973) 1049.
4. K. Fujikawa, Phys. Rev. D7 (1973) 393. [ Links ]
5. M. Báce and N.D. Hari Dass, Ann. Phys. (N.Y.) 94 (1975) 349; [ Links ] N.M. Monyonko, J.H. Reid, and A. Sen, Phys. Lett. B 136 (1984) 265; [ Links ] N.M. Monyonko, and J.H. Reid, Phys. Rev. D 32 (1985) 962. [ Links ]
6. J.M. Hernández, M.A. Pérez, G. Tavares-Velasco, and J.J. Toscano, Phys. Rev. D 60 (1999) 013004-1. [ Links ]
7. U. Cotti, J.L. Diaz-Cruz, and J.J. Toscano, Phys. Rev. D 62 (2000) 035009; [ Links ] G. Tavares-Velasco and J.J. Toscano, Phys. Rev. D 65 (2002)013005. [ Links ]
8. J.L. Díaz-Cruz, J. Hernández-Sanchez, and J.J. Toscano, Phys. Lett. B 512 (2001)339. [ Links ]
9. U. Cotti, J.L. Diaz-Cruz, and J.J. Toscano, Phys. Lett. B 404 (1997) 308. [ Links ]
10. C. Becchi, A. Rouet, and A. Stora, Commun. Math. Phys. 42 (1975) 127; [ Links ] Ann. Phys. (NY) 98 (1976) 287; [ Links ] I.V. Tyutin: Preprint FIAN (P. N: Lebedev Physical Institute of the USSR Academy of Sciences) 39 (1975). [ Links ]
11. L.D. Faddeev and V.N. Popov, Phys. Lett. B25 (1967) 29; [ Links ] B.S. De Witt, Phys. Rev. 162 (1967) 1195, 1239; [ Links ] L.D. Faddeev, Theor. Mat. Fiz. 1 (1969) 3 [ [ Links ]Theor. Math. Phys. 1 (1970) 1].
12. E.S Fradkin and G.A. Vilkovisky, Phys. Lett. B 55 (1975) 224; [ Links ] I.A. Batalin and G.A. Vilkovisky, Phys. Lett. B 69 (1977) 309; [ Links ] I.S. Fradkin and T.E. Fradkina, Phys. Lett.B 72 (1977) 334. [ Links ]
13. J. Gomis, J. Paris, S. Samuel, Phys. Rep. 259(1995) 1. [ Links ]
14. I.A. Batalin and G.A. Vilkovisky, Phys. Lett. B102 (1981) 27. [ Links ]
15. A. Denner, G. Weiglein, S. Dittmaier, Nucl. Phys. B440 (1995) 95, [ Links ] and references therein.
16. For a pedagogical introduction to the electroweak Background Field Method see, for instance, L.G. Cabral-Rosetti, Rev. Mex. de Fis. 48 (2002) 155, [ Links ] and references therein.