Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.50 no.4 México ago. 2004
Investigación
Low temperature S-shaped heat capacities in finite nuclei
Osvaldo Civitarese*, Peter O. Hess** and Jorge G. Hirsch**
* Departamento de Física, Universidad Nacional de La Plata, c.c. 67 1900, La Plata, Argentina.
** Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México D.F., Méx.
Recibido el 17 de marzo de 2004;
Aceptado el 11 de mayo de 2004.
Abstract
While in the thermodynamic limit a phase transition is signaled by the presence of a sharp peak in the specific heat, in finite systems a bump is usually found. However, there are relevant cases in which the presence of a low-temperature bump in the canonical specific heat of atomic nuclei is linked to the existence of isolated low energy states through a local Schottky effect, and do not represent a phase transition. Examples are presented for light and heavy deformed nuclei, by using in the calculations experimental and theoretical energy levels.
Keywords: Phase transition in nuclei; heat capacities.
Resumen
En el límite termodinámico una transición de fase está asociada a un pico bien definido en el calor específico. Por otro lado, en sistemas finitos como los núcleos atómicos se encuentren elevaciones anchas en el calor específico que no representan una tranformación de fase. Estos aparecen debido a la existencia de niveles aislados de baja energía a través del efecto Schottky local. Se presentan ejemplos de este comportamiento para núcleos deformados pesados y ligeros, y empleando tanto niveles de energía experimentales como espectros calculados en un modelo sencillo.
Descriptores: Transición de fase en núcleos atómicos; calor específico.
PACS: 05.30.Fk, 24.10.Pa, 27.30.+t, 27.70.+q
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
We acknowledge financial support through the CONACyT-CONICET agreement under the project Algebraic Methods in Nuclear and Subnuclear Physics, from CONACyT, and from DGAPA-UNAM project IN119002.
References
1. E. Melby et al., Phys. Rev. Lett. 83 (1999) 3150; [ Links ]
A. Schiller et al., Phys. Rev. C 63 (2001) 021306(R); [ Links ]
E. Melby et al., Phys. Rev. C 63 (2001) 044309. [ Links ]
2. Y. Alhassid, G.F. Bertsch and L. Fang, Phys. Rev. C 68 (2003) 044322. [ Links ]
3. S. Liu and Y. Alhassid, Phys. Rev. Lett. 87 (2001) 022501. [ Links ]
4. D.H.E. Gross, Phys. Rep. 279 (1997) 119; [ Links ]
A. Schiller, M. Guttormsen, M. Hjorth-Jensen, J. Rekstad and S. Siem, arXiv:nucl-th/0306082 v1, (2003).
5. A. Schiller, M. Guttormsen, M. Hjorth-Jensen, J. Rekstad and S. Siem, Phys. Rev. C 66 (2002) 024322. [ Links ]
6. A. Belić, D.J. Dean, and M. Hjorth-Jensen, Nucl. Phys. A 731 (2004) 381. [ Links ]
7. F. Gulminelli and Ph. Chomaz, Phys. Rev. Lett. 82 (1999) 1402; [ Links ] Ph. Chomaz, V. Duflot, and F. Gulminelli, Phys. Rev. Lett. 85 (2000) 3587. [ Links ]
8. A.L. Goodman, Nucl. Phys. A 352 (1981) 30. [ Links ]
9. O. Civitarese, G.G. Dussel and R.P.J. Perazzo, Nucl. Phys. A 404 (1983) 15. [ Links ]
10. Nguyen Dinh Dang and Nguyen Zuy Thang, J. Phys. G 14 (1988) 1471. [ Links ]
11. A.L. Godmann, Phys. Rev. C 48 (1993) 2679; [ Links ]
A. L. Goodman, Phys. Rev. Lett. 73 (1994) 416; [ Links ]
A. L. Goodman and T. Jin, Nucl. Phys. A 611 (1996) 149. [ Links ]
12. G.D. Yen and H.G. Miller, Phys. Rev. C 50 (1994) 807. [ Links ]
13. H.G. Miller, R.M. Quick, G. Bozzolo and J.P. Vary, Phys. Lett. B 168 (1986) 13; [ Links ]
H.G. Miller, R.M. Quick, and B.J. Cole, Phys. Rev. C 39 (1989) 1599; [ Links ]
H.G. Miller, B.J. Cole, and R.M. Quick, Phys. Rev. Lett. 63 (1989) 1922. [ Links ]
14. R.K. Bhaduri and W. van Dijk, Nuc. Phys. A 485 (1988) 1. [ Links ]
15. J. Dukelsky, A. Poves and J. Retamosa, Phys. Rev. C 44 (1991) 2872. [ Links ]
16. O. Civitarese and M. Schvellinger, J. Phys. G 20 (1994) 1933, and references therein. [ Links ]
17. O. Civitarese and M. Schvellinger, Phys. Rev. C 49 (1994) 1976. [ Links ]
18 . R.K. Pathria, Statistical Mechanics (Pergamon Press, Oxford, 1978). [ Links ]
19. O. Civitarese, G. G. Dussel and A. Zuker, Phys. Rev. C 40 (1989) 2900. [ Links ]
20. W. Greiner, L. Neise and H. Stöcker, Thermodynamics and Statistical Mechanics, (Springer, Heidelberg, 1994). [ Links ]
21. C.Y. Cha, N. Nordberg, R.B. Firestone and L.P. Ekström, 1999 ISOTOPE EXPLORER 2.23, Jan. 28; [ Links ]
F. Ajzenberg-Selove, Nucl. Phys. A 490 (1988) 1; [ Links ] ibid. 506 (1990) 1.
22. J.P. Elliott, Proc. R. Soc. London, Ser. A 245 (1958) 128; [ Links ] ibid.245 (1958 ) 562;
M. Harvey, Adv. Nucl. Phys. 1 (1968) 67. [ Links ]
23. K.T. Hecht and A. Adler, Nucl. Phys. A 137 (1969) 129; [ Links ]
A. Arima, M. Harvey and K. Shimizu, Phys. Lett B 30 (1969) 517. [ Links ]
24. O. Castarios, P.O. Hess, P. Rocheford and J.P. Draayer, Nucl. Phys. A 524 (1991) 469. [ Links ]
25. J.P. Elliott and P.G. Dawber, Symmetry in Physics: I and II, (Oxford University Press, Oxford, 1979). [ Links ]
26. H. Naqvi and J.P. Draayer, Nucl. Phys. A 516 (1990) 351. [ Links ]