Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.50 no.5 México oct. 2004
Cartas
Excitable chaos in diffusively coupled FitzHugh-Nagumo equations
G. Baier and M. Müller
Facultad de Ciencias, Universidad Autónoma del Estado de Morelos 62210 Cuernavaca, Morelos, México e-mail: baier@servm.fc.uaem.mx.
Recibido el 14 de octubre de 2003.
Aceptado el 26 de abril de 2004.
Abstract
A prototypic model of three coupled FitzHugh-Nagumo oscillators is shown to exhibit spatio-temporal hyperchaos. With increasing the number of coupled units the number of positive Lyapunov exponents increases. A system in two spatial dimensions shows two types of excitable spatio-temporal (hyper-)chaos depending on which variable is chosen for the coupling. Some implications for excitable cardiac tissue are discussed.
Keywords: FitzHugh-Nagumo equation; hyperchaos; spatio-temporal chaos.
Resumen
Un modelo prototípico de tres osciladores acoplados tipo FitzHugh-Nagumo muestra hipercaos espacio-temporal. Aumentando el número de unidades acopladas se aumenta el número de exponentes de Lyapunov positivos. Un sistema extendido en dos dimensiones espaciales genera dos tipos de (hiper-)caos excitable espacio-temporal dependiente de la variable de acoplamiento. Se discuten unas implicaciones para tejidos excitables cardiacos.
Descriptores: Ecuación de FitzHugh-Nagumo; hipercaos; caos espacio-temporal.
PACS: 05.45.-a; 05.45.Pq; 87.17.Hf
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
Work was supported by CONACyT, Mexico (project no. 40885-F). G.B. thanks Sven Sahle for help with finding the supercritical Hopf condition and for discussion during an early stage of the present work.
References
1. O.E. Rössler, Z. Naturforsch. 31a (1976) 1168. [ Links ]
2. Y. Kuramoto, Progr. Theor. Phys. Suppl. 64 (1979) 346. [ Links ]
3. O.E. Rössler, Z. Naturforsch. 38a (1983) 788. [ Links ]
4. G. Baier and M. Klein (eds.), A Chaotic Hierarchy (World Scientific, Singapore 1991). [ Links ]
5. P. Strasser, O.E. Rössler, and G. Baier, J. Chem. Phys. 104 (1996) 9974. [ Links ]
6. G. Baier and S. Sahle, Discrete Dynamics in Nature and Society 1 (1997) 161. [ Links ]
7. G. Baier, S. Sahle, J.-P. Chen, and A.A. Hoff, J. Chem. Phys. 110 (1999) 3251. [ Links ]
8. J. Kaplan and J. Yorke, Lecture Notes in Mathematics 730 (1979) 204. [ Links ]
9. M. Klein and G. Baier, Hierarchies of Dynamical Systems In [4], p. 1.
10. E. Mosekilde, Y. Maistrenko and D. Postnov, Chaotic Synchronization (World Scientific, Singapore 2002). [ Links ]
11. M. Rosenblum, A.S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 76 (1996) 1804. [ Links ]
12. J. Keener and J. Sneyd, Mathematical Physiology (Springer, New York 1998). [ Links ]
13. A. Panfilov and P. Hogeweg, Phys. Lett. A 176 (1993) 295. [ Links ]
14. M. Bär and M. Eiswirth, Phys. Rev. E 48 (1993) R1635. [ Links ]
15. A.T. Winfree, Science 266 (1994) 1003. [ Links ]
16. K. Goshima, Exp. Cell Res. 92 (1975) 339. [ Links ]
17. J.D. Murrey, Mathematical Biology (Second edition, Springer, Berlin 1993). [ Links ]
18. A. de Wit, G. Dewel, and P. Borckmans, Mode. Phys. E 48 (1993) R4191. [ Links ]
19. G. Baier, M. Müller, and H. Ørsnes, J. Phys. Chem. B 106 (2002) 3275. [ Links ]
20. G. Baier and S. Sahle, Discrete Dynamics in Nature and Society 1 (1997) 161. [ Links ]
21. H.B. Barlow, J. Physiol. (London) 119 (1953) 69. [ Links ]
22. D.P. Zipes and J. Jalife (eds.), Cardiac Electrophysiology (Saunders, Philapelphia 1990). [ Links ]