Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.50 no.5 México oct. 2004
Investigación
Surface deformations induced by CH3S adsorption on Au(111) and Cu(111): a DFT study
M.C. Vargasa,* and A. Sellonib
a Departamento de Física Aplicada, CINVESTAV-IPN Unidad Mérida Apartado Postal 73 Cordemex, 97310 Mérida, Yucatán, México. * Electronic address: cristina@mda.cinvestav.mx.
b Department of Chemistry Princeton University, Princeton, NJ 08544.
Recibido el 6 de mayo de 2004.
Aceptado el 17 de junio de 2004.
Abstract
Surface deformations induced by methylthiolate adsorption on the (111) faces of Au and Cu are investigated by means of state of the art DFT slab calculations. We find that a significant surface rearrangement takes place when the molecules are adsorbed. Surface deformations are found to be larger for Au than for Cu and the magnitude of the deformations depends on both the coverage and the site of adsorption. Methanethiol adsorption on both Cu(111) and Au(111) [1] is stronger for partial than for full coverage.
Keywords: Density functional calculations; total energy and cohesive energy calculations; chemisorption/physisorption; adsorbates on surfaces; organic self-assembled monolayers.
Resumen
La adsorción de CH3S sobre las superficies (111) de Au y Cu induce deformaciones que hemos investigado a través de cálculos cuanto-mecánicos basados en la teoría de funcionales de la densidad (DFT). Hemos encontrado que cuando las moléculas se adsorben, se produce un rearreglo superficial significativo. Nuestros resultados indican que las deformaciones inducidas en la superficie del oro son mayores que las inducidas en la del cobre y que la magnitud de las deformaciones dependen tanto de la fracción de la superficie que es cubierta por las moléculas adsorbidas, como de la posición sobre la cual se establecen dichas moléculas. En ambas superficies, Cu(111) y Au(111) [1], la adsorción es más fuerte para coberturas parciales que para cobertura total.
Descriptores: Cálculos con funcionales de la densidad; cálculos de energía total y de energía de cohesión; quimisorción/fisisorción; adsorbatos sobre superficies; monocapas de moléculas orgánicas autoensambladas.
PACS: 68.43.-h; 68.43.Bc; 68.43.Fg; 71.15.Mb; 71.15.Nc
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
This work was partially supported by DOE (DE-FG02-93ER45503). The computations have been done mainly on the Cray-T3E of the National Energy Research Scientific Computing Center (NERSC), Berkeley, Ca, and on the IBM-SP3 computer of the Princeton Materials Institute.
References
1. M.C. Vargas, P. Giannozzi, A. Selloni, and G. Scoles, J. Phys. Chem. 105 (2001) 9502. [ Links ]
2. C. Joachim, J.K. Gmzewski, and A. Aviram, Nature (London 408 (2000) 541. [ Links ]
3. A. Ulman Chem. Rev. 96 (1996) 1533. [ Links ]
4. F. Schreiber, Prog. Surf. Sci. 65 (2000) 151. [ Links ]
5. R.G. Nuzzo, B.R. Zegarski, and L.H. Dubois, J. Am. Chem. Soc. 109 (1987) 733. [ Links ]
6. H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, J. Am. Chem. Soc. 115 (1993) 9389. [ Links ]
7. H. Sellers, Surf. Sci. 294 (1993) 99. [ Links ]
8. M.H. Dishner, J.C. Hemminger, and F.J. Feher, Langmuir 13 (1997) 2322. [ Links ]
9. K.M. Beardmore, J.D. Kress, N. Grönbech-Jensen, and A.R. Bishop, Chem. Phys. Let 286 (1998) 40. [ Links ]
10. H. Kondoh and H. Nozoye, J. Phys. Chem. B103 (1999) 2585. [ Links ]
11. H. Grönbeck, A. Curioni, and W. Andreoni, J. Am Chem. Soc. 122 (2000) 3839. [ Links ]
12. T. Hayashi, Y. Morikawa and H. Nozoye, J. Chem. Phys. 114 (2001) 7615. [ Links ]
13. Y. Morikawa, T. Hayashi, C.C. Liew, and H. Nozoye, Surf. Sci. 507-510 (2002) 46. [ Links ]
14. Y. Morikawa, C.C. Liew, and H. Nozoye, Surf. Sci. 514 (2002) 389. [ Links ]
15. Y. Yourdshahyan and A.M. Rappe, J. Chem. Phys. 117 (2002) 825. [ Links ]
16. L.M. Molina and B. Hammer, Chem. Phys. Lett. 360 (2002) 264. [ Links ]
17. V. De Renzi, R. Di Felice, D. Marchetto, R. Biagi, U. del Pennino, and A. Selloni, J. Phys. Chem. 108 (2004) 16. [ Links ]
18. A. Imanishi, K. Isawa, F. Matsui, T. Tsuduki, T. Yokoyama, H. Kondoh, Y. Kitajima, T. Ohta, Surf. Sci. 407 (1998) 282. [ Links ]
19. M.S. Kariapper, G.F. Grom, G.J. Jackson, C.F. McConville and D.P. Woodruff, J. Phys.: Condens. Matter 10 (1998) 8661. [ Links ]
20. G.J. Jackson, D.P. Woodruff, R.G. Jones, N.K. Singh, A.S.Y. Chan, B.C.C. Cowie, and V. Formoso, Phys. Rev. Let. 84 (2000) 119. [ Links ]
21. S.M. Driver and D.P. Woodruff, Surf. Sci. 457 (2000) 11. [ Links ]
22. Y. Akinaga, T. Nakahima, and K. Hirao, J. Chem. Phys. 114 (2001) 8555. [ Links ]
23. A. Ferral, P. Paredes-Olivera, V.A. Macagno and E.M. Patrito, Surf. Sci. bf 525 (2003) 85. [ Links ]
24. N.P. Prince, D.L. Seymour, D.P. Woodruff, R.G. Jones and W. Walter, Surf. Sci. 215 (1989) 566. [ Links ]
25. I.L. Garzón, C. Rovira, K. Michaelian, M.R. Beltrán, P. Ordejón, J. Junquera, D. Sánchez-Portal, E. Artacho, and J.M. Soler, Phys. Rev. Lett. 85 (2000) 5250. [ Links ]
26. We have used the code PWSCF by S. Baroni, S. de Gironcoli, A.D. Corso, and P. Giannozzi; http://www.pwscf.org.
27. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46 (1992) 6671. [ Links ]
28. M. Scheffler and C. Stampfl, Theory of adsorption on metal surfaces, in: Handbook of Surface Science, Vol. 2, edited by K. Horn and M. Scheffler, Elsevier, Amsterdam, 1999. [ Links ]
29. A.R. Sandy, S.G. Mochrie, D.M. Zehner, K.G. Huang, D. Gibbs, Phys. Rev. B 43 (1991) 4667. [ Links ]
30. D. Vanderbilt, Phys. Rev. B 41 (1990) 7892. [ Links ]
31. N. Troullier, J.L. Martins, J.L. Phys. Rev. B 46 (1992) 1754. [ Links ]