Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.50 no.6 México dic. 2004
Investigación
Theoretical basis for the study of the effect of base composition on DNA melting
L. Dagduga and L. Youngb
a Universidad Autónoma Metropolitana Iztapalapa, Apartado Postal 55-534, 09340 México D.F. México.
b Mathematical and Statistical Computing Laboratory, National Institutes of Health, Bethesda, MD, 20892, USA.
Recibido el 22 de enero de 2004.
Aceptado el 14 de junio de 2004.
Abstract
We extend the ideas used to describe the glass transition in strong glasses employing the stochastic matrix method, giving a theoretical framework for the study of the configurational changes and the melting temperature of DNA. Our theoretical model enables a systematic study of the melting transition and the melting temperature dependence on the sequence differences in vertical stacking. Taking into account the fractional composition in a single strand, exact analytic results are given for the fraction of bonds intact and denatured at a particular temperature. This method is applicable to long DNA as well as RNA.
Keywords: DNA; melting temperature; stochastic matrix method.
Resumen
Se implementan las ideas utilizadas para describir la transición vítrea en vidrios fuertes utilizando el método de la matríz estocástica, dando un marco teórico para el estudio de los cambios configuracionales y la temperatura de desnaturalización del ADN. Nuestro modelo teórico nos permite hacer un estudio sistemático de la temperatura de desnaturalización y de la dependencia de esta temperatura con respecto a la diferencia en la secuencia del ADN. Tomando en cuenta la composición en una cadena, se obtienen resultados analíticos para la fracción de cadena intacta y de la fracción denaturada a una temperatura en particular. El método es aplicable a cadenas largas de ADN como de RNA.
Descriptores: ADN; temperaturas de desnaturaliación; método de la matríz estocástica.
PACS: 87.10+e
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. R.K. Saiki et al., Science 239 (1988) 487. [ Links ]
2. S.P.A. Fodor et al., Nature 364 (1993) 555. [ Links ]
3. S.M. Freier, Antisense Research and Applications S.T. Crooke and B. Lebleu Eds. (CRC Press, Boca Raton, FL,1993) p. 67. [ Links ]
4. E.M. Southern, J. Mol. Biol. 98 (1975) 503. [ Links ]
5. G. Steger, Nucleic Acids Res. 22 (1994) 2760. [ Links ]
6. V.A. Bloomfield, Physical chemistry of nucleic acids (Harper and Row, New York, 1974). [ Links ]
7. M. Wartell and A.S. Benight, Phys. Rep. 126 (1985) 67. [ Links ]
8. D.M. Crothers and B.H. Zimm, J. Mol. Biol. 9 (1964) 1. [ Links ]
9. Jr. SantaLucia, Proc. Natl. Acad. Sci. USA. 95 (1998) 1460. [ Links ]
10. P. Hobza and J. Sponer, Chem. Rev. 99 (1999) 3247. [ Links ]
11. D. Poland and H.A. Scheraga, Theory of Helix-Coil Transition in Biopolymer (Academic Press, New York, 1970). [ Links ]
12. R. Kerner, Phys. B 215 (1996) 267. [ Links ]
13. R.A. Barrio, R. Kerner, M. Micoulaut, and G.G. Naumis, J. Phys.: Condens Matter 9 (1997) 9219. [ Links ]
14. R. Kerner and G.G. Naumis, J. Phys.: Condens Matter 12 (2000) 1641. [ Links ]
15. L. Dagdug and E. Vázquez-Contreras, Rev. Mex. Fis. 48 S1 (2002) 168. [ Links ]
16. Arrows designate the direction of the sugar-phosphate chain, from the C'3 atom of a deoxyribose unit to the C'5 atom of the next deoxyribose adjacent to and on either side of the phosphodiester linkage. Sometimes nearest-neighbor base pairs are represented with a slash separating strands in an antiparallel orientation (e. g., AC/TG means 5'-AC-3' Watson-Crick bases paired with 3'-TG-5'or ↑ A · T / C · G ↓in the notation used throughout this paper).
17. R.A. Newmark and C.R. Cantor, J. Amer. Chem. Soc. 90 (1968) 5010. [ Links ]
18. R.D. Wells, J.E. Larson, R.C. Grant., B.E. Shortle, and C.R. Cantor, J. Mol. Biol. 54 (1970) 465. [ Links ]
19. K.J. Breslauer, R. Frank, H. Blocker, and L.A. Marky, Proc. Natl. Acad. Sci. U.S.A. 83 (1986) 3746. [ Links ]
20. S.G. Delcourt and R.D. Blacke, J. Biol. Chem. 266 (1991) 15160. [ Links ]
21. J. Marmur and P. Doty, J. Mol. Biol. 3 (1962) 109. [ Links ]
22. H. Tachibana, S. Ueno-Nishio, O. Gotoh, and A. Wada, J. Biochem. 92 (1982) 623. [ Links ]