Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.51 no.5 México oct. 2005
Carta
Local induction of spatio-temporal chaos
G. Baier, A. Ramírez, I. Amaro, and M. Müller
Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, Morelos, México e-mail: baier@servm.fc.uaem.mx
Recibido el 3 de diciembre de 2004.
Aceptado el 14 de junio de 2005.
Abstract
A periodic perturbation of one excitable system causes a symmetry-breaking instability in two reversibly coupled neighbors. The result is applied to a two-dimensional extended system. Tuning of the local perturbation frequency causes a regular target pattern to switch first to circular chaotic waves and then to chaotic wave fragments. Thus a global order-disorder transition can be induced by local control in an otherwise homogeneous medium.
Keywords: Spatio-temporal chaos; order-disorder transition; local control.
Resumen
Una perturbación periódica de un sistema excitable causa un rompimiento de simetría en dos osciladores acoplados reversiblemente. El resultado es aplicado a un sistema extendido en dos dimensiones espaciales. Ajustando la frecuencia de la perturbación local, se cambia un patrón regular de ondas circulares primero a ondas circulares caóticas y después a fragmentos de ondas caóticos. En consecuencia, una transición global orden-desorden se puede inducir bajo control local en un medio homogéneo.
Descriptores: Caos espacio-temporal; transición orden-desorden; control local.
PACS: 05.45.Ac; 05.45.Jn; 05.45.Xt
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
This work was supported by CONACyT, Mexico (project no. 40885-F). G.B. thanks Sven Sahle for the discussion.
References
1. R.A. Grey, A.M. Pertsov, and J. Jalife, Nature 392 (1998) 75; [ Links ] F.X. Witkowski et al., Nature 392 (1998) 78. [ Links ]
2. D.F. Smith et al. (eds.), An Atlas of Epilepsy (Parthenon Publishing, New York, 1998); [ Links ] J. Milton and P. Jung (eds.), Epilepsy as a Dynamic Disease (Springer, New York, 2003). [ Links ]
3. O.E. Rössler and Z. Naturforsch, 31a (1976) 1168; Y. Kuramoto, Progr. Theor. Phys. Suppl. 64 (1979) 346. [ Links ]
4. M. Bär and M. Eiswirth, Phys. Rev. E 48 (1993) R1635. [ Links ]
5. A. Panfilov and P. Hogeweg, Phys. Lett. A 176 (1993) 295; [ Links ] F.H. Fenton et al., Chaos 12 (2002) 852. [ Links ]
6. M.C. Mackey and U. an der Heiden, J. Math. Biol. 19 (1984) 211. [ Links ]
7. O. Steinbock, V.S. Zykov, and S.C. Müller, Nature 366 (1995) 322; [ Links ] V. Petrov, Q. Ouyang, and H.L. Swinney, Nature 388 (1997) 655; [ Links ] A.L. Lin et al., Phys. Rev. E62 (2000) 3790. [ Links ]
8. V.K. Vanag et al., Nature 406 (2000) 389; [ Links ] M. Hildebrand, H. Skødt, and K. Showalter, Phys. Rev. Lett. 87 (2001) 088303; [ Links ] I.Z. Kiss, Y. Zhai, and J.L. Hudson, Phys. Rev. Lett. 88 (2002) 238301. [ Links ]
9. A.T. Winfree, Science 266 (1994) 1003. [ Links ]
10. G. Baier, S. Sahle, J.-P. Chen, and A. Hoff, J. Chem. Phys. 110 (1999) 3251. [ Links ]
11. W. Gerstner and W. Kister, Spiking Neuron Models (Cambridge University Press, 2002). [ Links ]
12. See the chapters by K. Tomita et al., in: A.V. Holden (ed.), Chaos (Princeton University Press, Princeton, 1986). [ Links ]
13. J. Kaplan and J.A. Yorke, Lecture Notes in Mathematics 730 (1979) 204. [ Links ]
14. M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 76 (1996) 1804; [ Links ] E. Mosekilde, Y. Maistrenko, and D. Postnov, Chaotic Synchronization (World Scientific, Singapore 2002). [ Links ]
15. J.C. Sommerer and E. Ott, Nature 365 (1993) 138; [ Links ] E. Ott and J.C. Sommerer, Phys. Lett. A 188 (1994) 39. [ Links ]
16. N. Platt, E.A. Spiegel, and C. Tresser, Phys. Rev. Lett. 70 (1993) 279. [ Links ]
17. E. Rodriguez et al., Nature 397 (1999) 430. [ Links ]