Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.52 no.2 México abr. 2006
Investigación
Force constants and dispersion relations for the zincblende and diamond structures revisited
D.G. SantiagoPérez*, F. de LeónPérez**, R. PérezÁlvarez***
* Centro Universitario Jose Martí Pérez, Avenida de los Mártires 360, Sancti Spiritus, Cuba. email: dario@suss.co.cu
** Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E50009 Zaragoza, Spain. email: fdlp@unizar.es
*** Facultad de Física, Universidad de la Habana, 10400 Habana, Cuba, email: rpa@fisica.uh.cu
Recibido el 23 de noviembre de 2005
Aceptado el 17 de enero de 2006
Abstract
The bulk atomic equations of motion are revisited in order to show explicitly, for high symmetry directions, the transformation of this threedimensional problem into decoupled onedimensional problems. The force constants of the corresponding onedimensional equations are related to a larger number of force constants of the bulk problem. We illustrate how the threedimensional force constants (and consequently the whole dynamical matrix) can be estimated from a few either experimental or theoretical points for semiconductors in the zincblende and diamond structures.
Keywords: Force constants; zincblende; diamond.
Resumen
Las ecuaciones del movimiento en materiales masivos son retomadas para mostrar explícitamente, para direcciones de alta simetría, las transformaciones de este problema tridimensional en problemas unidimensionales desacoplados. Las constantes de fuerza de las correspondientes ecuaciones unidimensionales son relacionadas a un número mayor de constantes de fuerzas en el material masivo. Se ilustra como las constantes de fuerza tridimensionales (y consecuentemente la matriz dinámica) pueden ser estimadas a partir de unos pocos puntos experimentales o teóricos, para semiconductores de las estructuras blenda de zinc y diamante.
Descriptores: Constantes de fuerza; blenda de zinc; diamante.
PACS:63.10.+a;63.20.Dj
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
We thank Leonor Chico for useful discussions.
References
1. V. Narayamurti, H.L. Stormer, M.A. Chin, A.C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 43 (1979) 2012; [ Links ] G.A. Northrop and J.P. Wolfe, Phys. Rev. B 22 (1980) 6196; [ Links ] J.P. Wolfe, Phys. Today 33 (1980) 44; Phys. Today 48 (1995) 34; [ Links ] R.L. Weaver, M.R. Hauser, and J.P. Wolfe, Z Phys. B 90 (1993) 27. [ Links ]
2. S. Tamura, Phys. Rev. B 25 (1982) 1415; Phys. Rev. B 27 (1983) 858; Phys. Rev. B 28 (1983) 897; Phys. Rev. B 30 (1984) 849; Phys. Rev. B 43 (1991) 12646; [ Links ] S. Tamura and T. Harada, Phys. Rev. B 32 (1985) 5245; [ Links ] S. Tamura and J. P. Wolfe, Phys. Rev. B 35 (1987) 2528; [ Links ] S. Tamura, D. C. Hurley, and J.P. Wolfe, Phys. Rev. B 38 (1988) 1427; [ Links ] S. Mizuno and S. Tamura, Phys. Rev. B 50 (1994)7708. [ Links ]
3. T. Yao, Appl. Phys. Lett. 51 (1987) 1798; [ Links ] X.Y. Yu, G. Chen, A. Verma, and J.S. Smith, Appl. Phys. Lett. 67 (1995) 3554; [ Links ] W.S. Capinski et al., Physica B 263, 264 (1999) 530; [ Links ] W.S. Capinski et al., Phys. Rev. B 59 (1999) 8105; [ Links ] S.M. Lee, D.G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70 (1997) 2957. [ Links ]
4. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47 (1993) 12727; [ Links ] M.A. Weilert, M.E. Msall, J.P Wolfe, and A.C. Anderson, Z Phys. B 91 (1993) 179; [ Links ] M.A. Weilert, M.E. Msall, A.C. Anderson, and J.P. Wolfe, Phys. Rev. Lett. 71 (1993) 735; [ Links ] G.D. Mahan and H.B. Lyon, Jr., J. Appl. Phys. 76 (1994) 1899; [ Links ] J.O. Sofo and G.D. Mahan, Appl. Phys. Lett 65 (1994) 2690; [ Links ] D.A. Broido and T.L. Reinecke, 51 (1995) 13797. [ Links ]
5. P. Hyldgaard and G.D. Mahan, Phys. Rev. B 56 (1997) 10754; [ Links ] S. Tamura, Y. Tanaka, and H.J. Maris, Phys. Rev. B 60 (1999) 2627; [ Links ] M. V. Simkin and G.D. Mahan, Phys. Rev. Lett. 84 (2000) 927. [ Links ]
6. A. Fasolino, E. Molinari, and K. Kunc, Phys. Rev. B 41 (1990) 8302. [ Links ]
7. A.S. Barker, Jr., J.L. Merz, and A.C. Gossard, Phys. Rev. B 17 (1978) 3181. [ Links ]
8. C. Colvard et al., Phys. Rev. B 31 (1985) 2080. [ Links ]
9. B. Jusserand, D. Paquet, and A. Regreny, Phys. Rev. B 30 (1984)6245. [ Links ]
10. P. Molinas Mata and M. Cardona, Phys. Rev. B 43 (1991) 9799; Superl. Microstr. 10 (1991) 39; [ Links ] P. Molinas Mata, A. J. Shields, and M. Cardona, ibidem B 47 (1993) 1866. [ Links ]
11. A. Qteish and E. Molinari, Phys. Rev. B 42 (1990) 7090. [ Links ]
12. S. de Gironcoli, E. Molinari, R. Shorer, and G. Abstreiter, Phys. Rev B 48 (1993) 8959. [ Links ]
13. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1956). [ Links ]
14. K. Kunc, M. Balkanski, and M.A. Nusimovici, Phys. Rev. B 12 (1975) 4346; Phys. Status Solidi B 72 (1975) 229. [ Links ]
15. B.G. Dick Jr. and A.W. Overhauser, Phys. Rev. 112 (1958) 90. [ Links ]
16. G. Dolling and J.L.T. Waugh, in Lattice Dynamics, edited by R.F. Wallis (Pergamon, London, 1965), p. 19; [ Links ] K. Kunc and H. Bilz, Solid State Commun. 19 (1976) 1927; in Proceedings of the International Conference on Neutron Scattering, Gatlinburg, 1976, edited by R.M. Moon (Oak Ridge National Laboratory, Oak Ridge, 1976), p. 195. [ Links ]
17. W. Weber, Phys. Rev. Lett. 33 (1974) 371. [ Links ]
18. K.C. Rustagi and W. Weber, Solid State Commun. 18 (1976) 673. [ Links ]
19. G.F. Koster, Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press, New York, 1957) Vol. 5. [ Links ]
20. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976). [ Links ]
21. G. Nilson and G. Nelin, Phys. Rev. B 3 (1971) 364. [ Links ]