Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.52 supl.4 México nov. 2006
Deformation inside and outside the nuclear molecules
J. Cseha, J. Darai b, N.V. Antonenkoc, A. Algorad, P.O. Hesse, R.V. Jolosf and W. Scheid g
a Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Pf. 51, Hungary4001,
email: cseh@atomki.hu
b Institute of Experimental Physics, University of Debrecen, Debrecen, Bem tér 18/A, Hungary4026.
c Institut fur Theoretishe Physik der JustusLiebigUniversitat Giessen, Germany, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
d Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Pf. 51, Hungary4001.
e Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70543, 04510 México, D.F.
f Institut fur Theoretishe Physik der JustusLiebigUniversitat Giessen, Germany Joint Institute for Nuclear Research, 141980 Dubna, Russia.
g Institutfur Theoretishe Physik der JustusLiebigUniversitat Giessen, Germany.
Recibido el 27 de enero de 2006
Aceptado el 3 de mayo de 2006
Abstract
We investigate the interrelation of the clusterization and quadrupole deformation of atomic nuclei, as well as the role of the deformation of the clusters. In our study we incorporate both the energetic preference, and the effect of the Pauliexclusion principle. The 40Ca nucleus is considered as an illustrative example. The applied methods can be generalised to heavy nuclei, and to ternary clusterization, too.
Keywords: Cluster models; group theory.
Resumen
Se investiga la relación entre la formación de cúmulos y la deformación cuadrupolar de núcleos atómicos, así como la importancia de la deformación de los cúmulos mismos. En el presente trabajo se incorporan tanto a la preferencia energética como al principio de Pauli. Se considera al núcleo 40Ca como un ejemplo ilustrativo. Los métodos usados pueden extenderse a núcleos pesados y a sistemas de tres cúmulos.
Descriptores: Modelos de cumulos; teoría de grupos.
PACS:21.60.Fw;21.60.Gx
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
This work was supported by the OTKA (Grant Nos. T37502, T46791), by the MTACONACyT joint project, and by DGAGPA (Grant No. IN119002). J. Cseh recognizes partial support of the Alexander von Humboldt foundation, while A. Algora that of the Janos Bolyai research fellowship.
References
1. B. Buck, A.C. Merchant, and S.M. Perez, FewBody Systems 29 (2000) 53; [ Links ] B. Buck, A.C. Merchant, M.J. Horner, and S.M. Perez, Phys. Rev. C 61 (2000) 024314. [ Links ]
2. V.V. Volkov, Phys. Rep. 44 (1978) 93; [ Links ]Deep inelastic nuclei reactions (Energoizdat, Moscow, 1982). [ Links ]
3. J.P. Elliot, Proc. R. Soc. A 245 (1958) 562. [ Links ]
4. P. Rochford and D.J. Rowe, Phys. Lett B 210 (1988) 5; [ Links ] D.J. Rowe, P. Rochford, and J. Repka, J. Math. Phys. 29 (1988) 572. [ Links ]
5. Y. KanadaEnyo, M. Kimura, and H. Horiuchi, AIP Conf. Proc. 644 (2003) 188. [ Links ]
6. J. Cseh, A. Algora, J. Darai, and P.O. Hess, Phys. Rev. C 70 (2004) 034311. [ Links ]
7. A. Algora et al., AIP Conf. Proc. 802 (2005) 52. [ Links ]
8. J. Darai et al., in Proc. Int. Symp. on Quantum Theory and Symmetries (Varna, Bulgaria, 2005, in press). [ Links ]
9. E. Ideguchi et al., Phys. Rev. Lett. 87 (2001) 222501; [ Links ] C.J. Chiara et al., Phys. Rev. C 67 (2003) 041303. [ Links ]
10. W.J. Gerace and A.M. Greene, Nucl. Phys. A 93 (1967) 110; 123 (1969) 241; [ Links ] D.C. Zheng et al., Phys. Rev. C 87 (1990) 1004. [ Links ]
11. B.F. Bayman and A. Bohr, Nucl. Phys. 9 (1958/59) 596. [ Links ]
12. P. Kramer and M. Moshinsky, in Group Theory and its application, Ed: E.M. Loebl (Acad. Press, NY, 1968); [ Links ] V.G. Neudatschin, Yu. Smirnov, and N.F. Golovanova, Adv. Nucl. Phys. 11 (1979) 1; [ Links ] K.T. Hecht, Nucl. Phys. A283 (1977) 223; [ Links ] J. Draayer, Nucl. Phys A 237 (1975) 157; [ Links ] Y. Suzuki, Nucl. Phys. A 448 (1986) 395; [ Links ] K. Kato and H. Tanaka, Prog. theor. Phys. 81 (1989) 841; [ Links ] J. Cseh, Phys. Rev. C 50 (1994) 2240. [ Links ]
13. M. Jarrio, J.L. Wood, and D.J. Rowe, Nucl. Phys. A 528 (1991) 409. [ Links ]
14. P.O. Hess, A. Algora, M. Hunyadi, and J. Cseh, Eur. Phys. J. A 15 (2002) 449. [ Links ]
15. A. Algora and J. Cseh, J. Phys. G: Nucl. Part. Phys. 22 (1996) L39. [ Links ]
16. G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys. A 729 (2003) 337. [ Links ]
17. W. Greiner, J.Y Park, and W. Scheid, Nuclear Molecules (World Scientific, Singapore, 1995). [ Links ]
18. T.M. Shneidman et al., Phys. Lett. B 526 (2002) 322; [ Links ]Phys. Rev. C 67 (2003) 014313. [ Links ]
19. G.G. Adamian et al., Phys. Rev. C 67 (2003) 054303; ibid 69 (2004) 054310. [ Links ]
20. G.G. Adamian et al., Acta Phys. Pol. B 34 (2003) 2147. [ Links ]
21. G.G.Adamian et al., Int. J. Mod. Phys. E 5 (1996) 191. [ Links ]
22. S.Raman, C.W.Nester, and P.Tikkanen, At. Data and Nucl. Data Tables 78 (2001) 1. [ Links ]
23. J. Dudek, Prog. Part. Nucl. Phys. 28 (1992) 131. [ Links ]
24. A.B.Migdal, Theory of finite fermi systems and properties of atomic nuclei (Nauka, Moscow, 1982). [ Links ]
25. C.Y.Wong, Phys. Rev. Lett. 7 (1973) 766. [ Links ]
26. S. Torilov et al., Eur. Phys. J. A 19 (2004) 307. [ Links ]
27. J. Cseh et al., AIP Conf. Proc. 831 (2005) 65. [ Links ]