Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.52 supl.4 México nov. 2006
Fusion, breakup and scattering of weakly bound nuclei
P.R.S. Gomesa,*, J. Lubiana, b, I. Padrona, R.M. Anjosa, D.R. Otomar a, L.C. Chamonc, and E. Crema c
a Instituto de Física, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, Niterói, R.J., 24210340, Brazil, *email: paulogom@if.uff.br
b Center of Applied Studies to Nuclear Development, Havana, P.O. Box 6122, Cuba.
c Departamento de Física Nuclear, Universidade de São Paulo, Caixa Postal 66318, 05315970, São Paulo, S.P., Brazil.
Recibido el 3 de enero de 2006
Aceptado el 30 de marzo de 2006
Abstract
We discuss the influence of the breakup process of stable weakly bound nuclei on the fusion cross section and on the elastic scattering at near barrier energies. The complete fusion for heavy targets is found to be suppressed at energies above the barrier, whereas this effect is negligible for light targets. The total fusion cross sections are not affected by the breakup process. The non capture breakup is the dominant process at subbarrier energies, with significant cross sections also at energies close and above the Coulomb barrier. We also show that the breakup process is responsible for the vanishing of the usual threshold anomaly of the optical potential and give rise to a new type of anomaly, named breakup threshold anomaly (BTA).
Keywords: Breakup process; fusion cross sections; breakup threshold anomaly.
Resumen
Se discute la influencia del proceso de ruptura de núcleos estables débilmente enlazados en la sección eficaz de fusión y en la dispersión elástica a energías próximas a la de la barrera de Coulomb. La sección eficaz de fusión completa para blancos pesados es suprimida para energías superiores a la de la barrera de Coulomb, mientras que este efecto es despreciable para blancos ligeros. La sección eficaz de fusión total no es afectada por el proceso de ruptura. El proceso de ruptura sin captura de residuos es el proceso dominate a energías inferiores a la de la barrera, con secciones eficaces considerables también para energías del orden de la barrera de Coulomb y supeiores. Mostramos además, que el proceso de ruptura es el responsable por la ausencia de la anomalía de umbral usual del potencial óptico y conlleva a un nuevo tipo de anomalía, llamado anomalía de umbral de ruptura (BTA).
Descriptores: Proceso de ruptura; sección eficaz de fusión; anomalía de umbral de ruptura.
PACS: 25.60.Gc; 25.70 Jj; 25.70 Mn; 25.60 Dz
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
The authors would like to thank the CNPq, CAPES, FAPERJ and FAPESP for their financial support.
References
1. D. Glas and U. Mosel, Phys. Rev. C 10 (1974) 2620. [ Links ]
2. R.G. Stokstad et al., Phys. Rev. Lett. 41 (1978) 465. [ Links ]
3. P.R.S. Gomes, A.M. Maciel, and I.C. Charret, Rev. Mex. Ft. 2 (1993) 97. [ Links ]
4. M. Beckerman, Rep. Prog. Phys. 51 (1983) 1047. [ Links ]
5. A.B. Balantekin and N. Takigawa, Rev. Mod. Phys. 70 (1988) 77. [ Links ]
6. M. Dasgupta, D. Hinde, N. Rowley, and A. Stefanini, Ann. Rev. ofNucl. Part. Sci. 48 (1998) 401. [ Links ]
7. G.R. Satchler, Phys. Rep. 199 (1991) 147. [ Links ]
8. G.R. Satchler and W. Love, Phys. Rep. 55 (1979) 183. [ Links ]
9. M.A. Nagarajan, C.C. Mahaux, and G.R. Satchler, Phys. Rev. Lett. 54 (1985) 1136. [ Links ]
10. L.F. Canto, P.R.S. Gomes, R. Donangelo, and M.S. Hussein, Phys. Rep. (in press). [ Links ]
11. M.S. Hussein, Nucl. Phys. A 531 (1991) 192. [ Links ]
12. M.S. Hussein, M.P. Pato, L. F. Canto, and R. Donangelo, Phys. Rev. C 46 (1992) 377. [ Links ]
13. N. Takigawa, M. Kuratami, and H. Sagawa, Phys. Rev. C 47 (1993) R2470. [ Links ]
14. C. Dasso and A. Vitturi, Phys. Rev. C 50 (1994) R12. [ Links ]
15. M.S. Hussein et al., Nucl. Phys. A 588 (1995) 85c. [ Links ]
16. L.F.Canto, R. Donangelo, P. Lotti, and M.S. Hussein, Phys. Rev. C 52 (1995) R2848. [ Links ]
17. M.S. Hussein, L.F. Canto, and R. Donangelo, Nucl. Phys. A 722 (2003) 321. [ Links ]
18. K. Hagino, A Vitturi, C.H. Dasso, and S.M. Lenzi, Phys. Rev. C 61 (2000) 037602. [ Links ]
19. A. DiazTorres and I.J. Thompson, Phys. Rev. C 65 (2002) 024606. [ Links ]
20. S.B. Moraes et al., Phys. Rev. C 61 (2000) 064608. [ Links ]
21. P.R.S. Gomes et al., Heavy Ion Phys. 11 (2000) 361. [ Links ]
22. I. Padron et al., Phys. Rev. C 66 (2002) 044608. [ Links ]
23. P.R.S. Gomes, J. Lubian, and R.M. Anjos, Nucl. Phys. A 734 (2004), 233. [ Links ]
24. P.R.S. Gomes et al., Phys. Lett. B 601 (2004) 20. [ Links ]
25. M.D. Rodriguez et al., Braz. J. Phys. 34 (2004) 869. [ Links ]
26. R.M. Anjos et al., Phys. Lett. B 534 (2002) 45. [ Links ]
27. P.R.S. Gomes et al., Phys. Rev. C 71 (2005) 034608. [ Links ]
28. G.V. Marti et al., Phys. Rev. C 71 (2005) 027602. [ Links ]
29. M. Dasgupta et al., Phys. Rev Lett 82 (1999) 1395. [ Links ]
30. M. Dasgupta et al., Phys. Rev. C 66 (2002) R041602. [ Links ]
31. M. Dasgupta et al., Phys. Rev. C 70 (2004) 024606. [ Links ]
32. P.R.S. Gomes, R.M. Anjos and J. Lubian, Braz. J. Phys. 34 (2004) 737. [ Links ]
33. P.R.S. Gomeset al., Braz. J. Phys. 35 (2005) 902. [ Links ]
34. P.R.S. Gomes et al., Phys. Lett. B (in press). [ Links ]
35. P.R.S. Gomes, J. Lubian, I. Padron, and R.M. Anjos, Phys. Rev. C 71 (2005) 017601. [ Links ]
36. E. Crema, L.C. Chamon, and P.R.S. Gomes, Phys. Rev. C 72 (2005) 034610 [ Links ]
37. L.C. Chamon et al., Phys. Rev. C 66 (2002) 014610. [ Links ]
38. M.A.G. Alvarez et al., Nuclear Physics A 723 (2003) 93. [ Links ]
39. L.R. Gasques, L.C. Chamon, P.R.S. Gomes, and J. Lubian, Nucl. Phys. A 764 (2006) 135 [ Links ]
40. A. Mukherjee et al., Phys. Lett. B 526 (2002) 295. [ Links ]
41. P.R.S. Gomes et al., Phys. Rev. C 70 (2004) 054605. [ Links ]
42. A.M.M. Maciel et al., Phys. Rev. C 59 (1999) 2103. [ Links ]
43. P.R.S. Gomes et al., J. Phys. G 31 (2005) S1669. [ Links ]
44. L.C. Chamon, P.R.S. Gomes, J. Lubian, and M.S. Hussein, submitted to Phys. Rev. Letters. [ Links ]