Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.53 no.4 México ago. 2007
Investigación
On the boundary conditions in tracer transport models for fractured porous underground formations
M. Coronado, J. RamírezSabag, and O. ValdiviezoMijangos
Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, 07730 México D.F., México, email: mcoronad@imp.mx, jrsabag@imp.mx, ovaldivi@imp.mx
Recibido el 24 de octubre de 2006
Aceptado el 7 de junio de 2007
Abstract
A boundary condition traditionally used in analytical models for tracer or contaminant pulse transport in porous underground formations gives the tracer concentration at the injection border as a discontinuous function in time. It has recently been shown that this condition leads to a physically improper pulse behavior. Models using sounder boundary conditions are already available for nonfractured porous media, but not for fractured media, where the traditional condition is commonly employed which can potentially lead to errors. We develop two new formulations to describe tracer tests in fractured media. They set conditions (i) on the total amount of injected tracer and (ii) on the tracer flow. The new formulations are compared against the traditional debatable model by examining tracer breakthrough curve differences. It has been found that they are important at small Peclet numbers. Differences are analyzed in two ways, by (a) employing typical model parameter values, and (b) fitting the three models to the same field tracer data set, and comparing the resulting model parameter values. In the first case the breakthrough curve difference has been quantified at 25%, and in the field tests considered in the second case it was from 1% to 10%. In general these discrepancies are small, but could become significant in some cases.
Keywords: Boundary conditions; tracer transport; porous media; fractured reservoirs.
Resumen
Una condición de frontera usada tradicionalmente en modelos analíticos de transporte de un pulso de trazador o de contaminante en formaciones porosas subterraneas, establece la concentración de trazador en la frontera de inyección como una función discontinua en el tiempo. Recientemente se mostró que esta condición da lugar a comportamientos físicamente inadecuados del pulso. Modelos con condiciones de frontera mas sólidas existen para formaciones nofracturadas pero no para fracturadas, para las cuales se emplea comúnmente el modelo tradicional, lo cual puede llevar a conclusiones erroneas. En este trabajo se presentan dos formulaciones para medios fracturados que están basadas en condiciones de frontera sólidas que especifican (i) la cantidad total de trazador inyectado, y (ii) el flujo de trazador en la frontera. Las nuevas formulaciones son comparadas con el modelo tradicional en terminos de las diferencias en la curva de surgencia del trazador. Las discrepancias son importantes a números Peclet pequeños. Ellas son cuantificadas empleando (a) valores típicos para los parámetros involucrados en los modelos, y (b) ajustando los tres modelos al mismo conjunto de datos de pruebas de trazadores y comparando el valor de los parametros obtenidos. En el primer caso la diferencia encontrada es 25% y en el segundo de 1% a 10%. En general estas discrepancias son pequeñas, pero podrían ser significativas en algunos casos.
Descriptores: Condiciones de frontera; transporte de trazador; medios porosos; yacimientos fracturados.
PACS: 05.60.Cd
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. W. Káss, Tracing Technique in Geohydrology (A. Balkema, Rotterdam, 1998). [ Links ]
2. R.J. Charbeneau, Groundwater Hydraulics and Pollutant Transport (Prentice Hall, Upper Saddle River, NJ, 2000). [ Links ]
3. J. Bear, Dynamics of Fluids in Porous Media (Dover Publications, New York, 1972). [ Links ]
4. M. Th. Van Genuchten and W. J. Alves, Analytical solutions on the onedimensional convectivedispersive transport equation. Technical Bulletin 1661, George E. Brown Jr. Salinity Laboratory, Unites States Department of Agriculture, Riverside, CA (1982). http://ars.usda.gov/sp2UserFiles/Place/53102000/pdf pubs/P0753.pdf [ Links ]
5. N.D. Gershon and A. Nir, Water Resour. Res. 5 (1969) 830. [ Links ]
6. A. Kreft and A. Zuber, Chem. Eng. Sci. 33 (1978) 1471. [ Links ]
7. K.S. Novakowski, Water Resour. Res. 28 (1992) 2399. [ Links ]
8. R.C. Schwartz, K.J. McInnes, A.S.R. Juo, and L.P Wilding, Water Resour. Res. 35 (1999) 671. [ Links ]
9. P. Maloszewski and A. Zuber, J. Hydrology 79 (1985) 333. [ Links ]
10. Lenda and A. Zuber, Isotope Hydrology 1970 (IAEA, Vienna, 1970) p. 619. [ Links ]
11. P. Maloszewski and A. Zuber, Water Resour. Res. 26 (1990) 1517. [ Links ]
12. M. Coronado, J. Ramírez, and F. Samaniego, Transp. Porous Med. 54 (2004) 221. [ Links ]
13. V. Batu and M.T. van Genuchten, Water Resour. Res. 26 (1990) 339. [ Links ]
14. G. Moridis, Water Resour. Res. 38 (2002) 46; doi: 10.1029/2001WR 001028. [ Links ]
15. A. Lange, J. Bouzian, and B. Bourbiaux, Tracertest simulation on discrete fracture network models for the characterization of fractured reservoirs. SPE/EAGE Annual Conference, Madrid, Spain, 1316 June 2005. Society of Petroleum Engineers library record # 94344, http://www.spe.org. [ Links ]
16. Ch. Shan and K. Pruess, Water Resour. Res. 41 (2005) W085021; doi:10.1029/2005WR004081. [ Links ]
17. M. Coronado and J. Ramírez, Transp. Porous Med. 60 (2005) 339. [ Links ]
18. M. Coronado, J. RamírezSabag, O. ValdiviezoMijangos, and C. Somaruga, Further considerations on the boundary conditions used in reservoir tracer test models: analysis of some field cases. Submitted for publication. [ Links ]
19. P. Maloszewski, Mathematical Modeling of Tracer Experiments in Fissured Aquifers, (Freiburger Scrifften zur Hydrologie, Vol. 2, published by Universitat Freiburg, Freiburg, Germany, 1994). [ Links ]
20. G.W. Walkup and R.N. Horne, Characterization of tracer retention processes and their effect on tracer transport in fractured geothermal reservoirs. SPE 1985 California Regional Meeting, Bakersfield, CA, 2729 March, Society of Petroleum Engineers library record #13610, http://www.spe.org [ Links ]
21. J. RamírezSabag, A model to predict the tracer flow in naturally fractured geo thermal reservoirs, M. Eng. Thesis (in Spanish), School of Engineering, National University of Mexico, Mexico, 1998. [ Links ]
22. E.A. Sudicky and E.O. Frind, Water Resour. Res. 18 (1982) 1634. [ Links ]
23.P. Maloszewski and A. Zuber, Interpretation of artificial and environmental tracers in fissured rocks with a porous matrix. Proc. Isotope Hydrology 1983, Int. Atomic Energy Agency (IAEA), Vienna, Austria, 1216 September, p. 635. [ Links ]
24. P. Maloszewski and A. Zuber, Water Resour. Res. 29 (1993) 2723. [ Links ]
25. F.R. de Hoog, J.H. Knight, and A.N. Stokes, SIAMJ. Sci. Stat. Comput. 3 (1982) 357. [ Links ]
26.J. RamírezSabag, O. ValdiviezoMijangos, and M. Coronado, Geofísica Internacional 44 (2005) 113. [ Links ]
27. Z. Dai and J. Samper, Water Resour. Res. 40 (2004) W07471;, doi: 10.1029/2004 WR003248. [ Links ]
28. P.A. Lapcevic, K.S. Novakowski, and E.A. Sudicky, Water Resour. Res. 35 (1999) 2301. [ Links ]
29. C.L. Jensen, Matrix diffusion and its effect on the modeling of tracer returns from the fractured geothermal reservoir at Wairakei, New Zealand. SGPTR71, Report of the Stanford Geothermal Program, Stanford University, Stanford CA, 1983. [ Links ]
30. M. Mercado, C.E. Perez, M. Asadi, and D.R. Casas, Gasflow pattern evaluation: a successful interwell field study. SPE proceedings of the Latin American and Caribbean Petroleum Engineering Conference, Port of Spain, Trinidad, West Indies, 2730 April 2003. Society of Petroleum Engineers library record # 81005, http://www.spe.org [ Links ]