SciELO - Scientific Electronic Library Online

 
vol.53 suppl.3Why ferroelectricity? synchrotron radiation and ab initio answersFundamental physics with cold and ultracold neutrons índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.53  supl.3 México feb. 2007

 

Effect of noise on the identification of digitized Bragg Curves

 

J. J. Vega* and R. Reynoso

 

Departamento del Acelerador, Gerencia de Ciencias Básicas, Instituto Nacional de Investigaciones Nucleares,Apartado Postal 18-1027, 11801, México D. F., México

 

Recibido el 2 de marzo de 2006
Aceptado el 18 de agosto de 2006

 

Abstract

Recently, pulse shape analysis, PSA, assisted by artificial neural networks, ANN, used as pattern identifiers has received attention by several groups interested in analyzing different kind of signals. In this, as well as in many experimental fields, noise is a ubiquitous known undesirable problem when dealing with experimental signals, requiring a considerable effort to restrain it as much as possible in order to improve the reliability of the measurements. Nonetheless, the remaining noise demands a careful analysis in order to be able to asses its effect. In this paper we present results of the effect of noise on the performance of an ANN used to assist PSA of synthetic Bragg curves.

Keywords: Neural networks; Bragg curve spectroscopy; digital pulse-shape analysis; pattern identification.

 

Resumen

Recientemente, el análisis de forma de pulsos, AFP, auxiliado por redes neuronales artificiales, RNA, usadas como identificadores de patrones, ha despertado la atención de varios grupos interesados en le análisis de diferentes tipos de señales. En éste, como en muchos otros campos, el ruido es un conocido e indeseable problema muy común cuando se manejan señales experimentales; requiriéndose de un considerable esfuerzo para disminuirlo lo mas posible con objeto de mejorar la confiabilidad de las mediciones. Sin embargo, el ruido residual demanda un análisis cuidadoso para poder estimar su efecto. En este trabajo, se presentan resultados de los efectos del ruido sobre el desempeño de una RNA usada como auxiliar para el AFP de curvas de Bragg sintéticas.

Descriptores: Redes neuronales; espectroscopia de curva de Bragg; análisis digital de forma de pulsos; identificación de patrones.

 

PACS: 07.05.Kf; 07.05.Mh; 29.40.Cs

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. C.R. Gruhn et al., Nucl. Instr. and Meth. 196 (1982) 33.        [ Links ]

2. A. Moroni et al., Nucl. Instr. and Meth. 225 (1984) 57.        [ Links ]

3. M.F. Vinyard et al., Nucl. Instr. and Meth. A255 (1987) 507.        [ Links ]

4. K.E. Rhem and F.L. Wolfs, Nucl. Instr. and Meth. A273 (1988) 262.        [ Links ]

5. J.J. Vega, II Kolata, W. Chung, D.J. Henderson and C.N. Davids, Proc. XIV Symposium on Nuclear Physics, Cuernavaca, México, 1991, M. Brandan, (ed., World Scientific, Singapore, 1991) 221.        [ Links ]

6. L. Andronenko et al., Preprint PNPI NP-3-1998 Nr. 2217.        [ Links ]

7. N.J. Shenhav and H. Stelzer, Nucl. Instr. and Meth. 228 (1985) 359.        [ Links ]

8. M.N. Andronenko and W. Neubert, Annual report 1998-1999 FZR-271 (1999) 67.        [ Links ]

9. J.J. Vega and R. Reynoso, Nucl. Instr. and Meth. B243 (2006) 232.        [ Links ]

10. C. M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press-Oxford, (1995).        [ Links ]

11. C. M. Bishop, IEEE Transactions of Neural Networks 4 (1993) 882.        [ Links ]

12. C. Wang, S.S. Venkatesh and J.S. Judd, NIPS' 1993 Vol. 6, eds. J. Cowan, G. Tesauro, J. Alspector, Morgan-Kaufmann, (1994) 303.        [ Links ]

13. W.S, Sarle, in Proc. of the 27th Symposium on the Interface of Computing Science and Statistics, (1995) 352-360,        [ Links ]

14. A.S. Weigend, M. Mangeas and A.N. Srivastava, International Journal of Neural Systems 6 (1995) 373.        [ Links ]

15. C.M. Bishop, Neural Computation 7 (1995) 108.        [ Links ]

16. S. Bös, ICANN' 1995 Vol. 2, ed. by EC2 & Cie, 111.        [ Links ]

17. S. Bös, NIPS' 1995 Vol. 8, eds. G. D. Touretzky, M. Mozer, M. Hasselmo, MIT Press, (1996) 218.        [ Links ]

18. P. Sollich and A. Krogh, in Advances in Neural Information Processing Systems Vol. 8, eds. D. S. Touretzky, M. C. Mozer and M. E. Hasselmo, MIT Press, (1996) 190.        [ Links ]

19. S. Amari, N. Murata, K.-R. Finke, M. Finker and H. Yang, IEEE Transaction on Neural Networks 8 (1997) 985;         [ Links ] and NIPS ' 1995 Vol. 8, eds. G. D. Touretzky, M. Mozer, M. Hasselmo, MIT Press, (1996) 190.        [ Links ]

20. S. Amari and N. Murata, IWANN' 1997, eds. J. Mira, R.Moreno-Diaz, I Cabestany, Springer, (1997) 284.        [ Links ]

21. S. Lawrence and C. L. Giles, IJCNN' 00 Vol. 1, eds. Shun-Ichi Amari, C. Lee Giles, Marco Gori, and Vincenzo Piuri, IEEE Press, (2000) 114.        [ Links ]

22. P. Domingos, ICML ' 2000, Morgan Kaufman, (2000) 223.        [ Links ]

23. G. N. Karystinos and D.A. Pados, IEEE Transactions on Neural Networks 11 (2000) 1050.        [ Links ]

24. R. Caruana, S. Lawrence and C.L. Giles, NIPS ' 2000 Vol , 13, eds. T. Leen, T. Dietterich, V. Tresp, MIT Press, (2001) 28.        [ Links ]

25. A. Zell et al., SNNS - Stuttgart Neural Network Simulator, version 4.2, University of Stuttgart, Institute for Parallel and Distributed High Performance Systems; and University of Tübingen, Wilhem-Schickard-Institute for Computer Science, (1998).        [ Links ]

26. B. Majorovits and H.V. Klapdor-Kleingrothaus, Eur. Phys. J. A6 (1999) 463.        [ Links ]

27. J.J. Vega, M.R. Reynoso, M. Arias E. and L. Altamirano R., Proc. IJCNN2000, Neural Computing: New Challenges and Perspectives for the New Millennium, Como, Italy, IV 2000, Shun-Ichi Amari, C. Lee Giles, Marco Gori, and Vincenzo Piuri, eds., IEEE Computer Society, Los Alamitos California, USA, (2000) 379.        [ Links ]

28. J.J. Vega and M.R. Reynoso, Proc. of The 7th World Multiconference on Systemics, Cybernetics and Informatics, Vol. XIV Computer Science Engineering Applications, ed. N. Callaos, W. Lesso, B. Sánchez and S. Li, July 27-30, Orlando, Florida, USA (2003) 396.        [ Links ]

29. J. Damgov and L. Litov, Nucl. Instr. and Meth. A482 (2002) 776.        [ Links ]

30. M. Ambrosio et al., (The MACRO Collaboration), Nucl. Instr. and Meth. A492 (2002) 376.        [ Links ]

31. E. Yoshida, K. Shizuma, S. Endo and T. Oka, Nucl. Instr. and Meth. A484 (2002) 557.        [ Links ]

32. C.M. Bishop, Neural networks for pattern recognition, Clarendon Press-Oxford, (1995).        [ Links ]

33. J.E. Moody, in Advances in Neural Information Processing Systems 4, J.E. Moody, S. J. Hanson and R.P Lippmann, eds., Morgan Kaufman, Palo Alto, (1992) 847.        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons