SciELO - Scientific Electronic Library Online

 
vol.54 número3Optical spectroscopy and multivariate analysis of biomedical opticsMeasurements of local radii of curvature by the retrocollimated interferometric method índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.54 no.3 México jun. 2008

 

Investigación

 

Linearized five dimensional Kaluza–Klein theory as a gauge theory

 

G. Atondo–Rubio, J.A. Nieto*, L. Ruiz, and J. Silvas

 

Facultad de Ciencias Físico–Matemáticas, Universidad Autónoma de Sinaloa, 80000, Culiacán, Sinaloa, México, * e–mail: nieto@uas.uasnet.mx

 

Recibido el 30 de julio de 2007
Aceptado el 26 de marzo de 2008

 

Abstract

We develop a linearized five–dimensional Kaluza–Klein theory as a gauge theory. By perturbing the metric around flat and de Sitter backgrounds, we first discuss linearized gravity as a gauge theory in any dimension. In the particular case of five dimensions, we show that in using the Kaluza–Klein mechanism, the field equations of our approach imply both linearized gauge gravity and Maxwell theory in flat and de Sitter scenarios. As a possible further development of our formalism, we also discuss an application in the context of gravitational polarization scattering by means of the analogue of the Mueller matrix in optical polarization algebra. We argue that this application can be of particular interest in gravitational wave experiments.

Keywords: Kaluza–Klein theory; linearized gravity; Mueller matrix

 

Resumen

Desarrollamos una teoría Kaluza–Klein linealizada en cinco dimensiones como una teoría de norma. Discutimos primero gravedad linealizada como una teoría de norma en cualquier dimensión perturbando las métricas de fondo plana y la de de Sitter. Demostramos que usando el mecanismo de Kaluza–Klein en el caso particular de cinco dimensiones, las ecuaciones de campo de nuestra aproximación implican tanto gravedad linealizada de norma como la teoría de Maxwell en escenarios planos y de de Sitter. Como otro posible desarrollo de nuestro formalismo, también discutimos una aplicación en el contexto de dispersión gravitacional polarizada, por medio de una matriz análoga a la de Mueller usada en el álgebra de polarización óptica. Argumentamos que esta aplicación puede ser de interés particular en los experimentos de ondas gravitacionales.

Descriptores: Teoría de Kaluza–Klein; gravedad linealizada; matriz de Mueller.

 

PACS: 04.50.+h, 04.30.–w, 98.80.–k, 42.15.–i

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

We would like to thank C.M. Yee and E.A. León for their helpful comments. This work was supported in part by the UAS under the program PROFAPI–2006.

 

References

1. J.A. Nieto, Mod. Phys. Lett. A 20 (2005) 135; hep–th/0311083.        [ Links ]

2. G.'t Hooft et al., Nature 433 (2005) 257.        [ Links ]

3. M.J. Duff, "Kaluza–Klein theory in perspective", talk given at The Oskar Klein Centenary Symposium, Stockholm, Sweden, 19–21 Sep 1994. In *Stockholm 1994, The Oskar Klein centenary* 22–35, and Cambridge U. – NI–94–015 (94/10,rec.Oct.) 38 p. Texas A & M U. College Station – CTP–TAMU–94–022 (94/10) 38 p; hep–th/9410046.        [ Links ]

4. M. Novello and R.P. Neves, Class. Quant. Grav. 20 (2003) L67; "Apparent mass of the graviton in a de Sitter background", gr–qc/0210058.        [ Links ]

5. E.A. León and J.A. Nieto, work in progress (2008).        [ Links ]

6. J.A. Nieto, Phys. Lett. A 262 (1999) 274; hep–th/9910049.        [ Links ]

7. M. Henneaux and C. Teitelboim, Phys. Rev. D 71 (2005) 024018; gr–qc/0408101.        [ Links ]

8. C.M. Hull, JHEP 0109 (2001) 027; hep–th/0107149.        [ Links ]

9. S. Cnockaert, "Higher spin gauge field theories: Aspects of dualities and interactions", (Brussels U., PTM), Jun 2006. 193 pp., Ph.D. Thesis, e–Print Archive: hep–th/0606121.        [ Links ]

10. A.J. Nurmagambetov, "Duality–symmetric approach to general relativity and supergravity", To memory Vladimir G. Zima and Anatoly I. Published in SIGMA 2 (2006) 020; hep–th/0602145.        [ Links ]

11. B. Julia, I Levie, and S.S. Ray, JHEP 0511 (2005) 025; hep–th/0507262.        [ Links ]

12. E. Witten, Selecta Math. 1 (1995) 383; hep–th/9505186.        [ Links ]

13. Y. Lozano, Phys. Lett. B 364 (1995) 19; hep–th/9508021.        [ Links ]

14. L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 4690; hep–th/9906064.        [ Links ]

15. S.B. Giddings, E. Katz, and L. Randall, JHEP 0003 (2000) 023; hep–th/0002091;         [ Links ] H. Collins and B. Holdom, Phys. Rev. D 62 (2000) 124008; hep–th/0006158;         [ Links ] N. Deruelle and T. Dolezel, Phys. Rev. D 64 (2001) 103506: gr–qc/0105118        [ Links ]

16. J.A. Nieto, J. Saucedo, and V.M. Villanueva, Phys. Lett. A 312 (2003) 175: hep–th/0303123.        [ Links ]

17. T. Fukai and K. Okano, Prog. Theor. Phys. 73 (1985) 790.        [ Links ]

18. J.B. Hartle, Phys. Rev. D 29 (1984) 2730.        [ Links ]

19. M. Novello and R.P. Neves, Class. Quant. Grav. 20 (2003) L67;         [ Links ] M. Novello, S.E. Perez Bergliaffa, and R.P. Neves, "Reply to 'Aacausality of massive charged spin–2 fields' "; gr–qc/0304041.        [ Links ]

20. S. Deser and A. Waldron, "Acausality of massive charged spin–2 field", hep–th/0304050.        [ Links ]

21. S.R. Cloude, Optik 75 (1986) 26.        [ Links ]

22. S. Huard, Polarization of Light (John Wiley & Sons 1997).        [ Links ]

23. G. Atondo–Rubio, R. Espinosa–Luna, and A. Mendoza–Suárez, Opt. Commun. 244 (2005) 7.        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons